论文标题
通过非平滑控制屏障功能,通过四肢旋转器进行视觉环境监测的分布式覆盖孔预防孔
Distributed Coverage Hole Prevention for Visual Environmental Monitoring with Quadcopters via Nonsmooth Control Barrier Functions
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This paper proposes a distributed coverage control strategy for quadcopters equipped with downward-facing cameras that prevents the appearance of unmonitored areas in between the quadcopters' fields of view (FOVs). We derive a necessary and sufficient condition for eliminating any unsurveilled area that may arise in between the FOVs among a trio of quadcopters by utilizing a power diagram, i.e. a weighted Voronoi diagram defined by radii of FOVs. Because this condition can be described as logically combined constraints, we leverage nonsmooth control barrier functions (NCBFs) to prevent the appearance of unmonitored areas among a team's FOV. We then investigate the symmetric properties of the proposed NCBFs to develop a distributed algorithm. The proposed algorithm can support the switching of the NCBFs caused by changes of the quadcopters composing trios. The existence of the control input satisfying NCBF conditions is analyzed by employing the characteristics of the power diagram. The proposed framework is synthesized with a coverage control law that maximizes the monitoring quality while reducing overlaps of FOVs. The proposed method is demonstrated in simulation and experiment.