论文标题
通过差异性学习Riemannian稳定动力系统
Learning Riemannian Stable Dynamical Systems via Diffeomorphisms
论文作者
论文摘要
灵巧和自主的机器人应能够巧妙地执行精心执行的动力学动作。可以利用学习技术来建立这种动态技能的模型。为此,学习模型需要编码类似于所需运动动态的稳定向量字段。这是具有挑战性的,因为机器人状态没有在欧几里得空间上演变,因此稳定性保证和向量场编码需要考虑到例如方向表示所产生的几何形状。为了解决这个问题,我们建议从演示中学习Riemannian稳定的动力系统(RSD),从而使我们能够说明由动态系统状态表示产生的不同几何约束。我们的方法提供了lyapunov稳定性的保证,可保证通过基于神经歧管odes构建的差异形态在所需的运动动力学上强制执行。我们表明,我们的Riemannian方法使学习稳定的动态系统可以在说明性示例和现实世界的操纵任务上显示复杂的矢量字段,而Euclidean近似失败。
Dexterous and autonomous robots should be capable of executing elaborated dynamical motions skillfully. Learning techniques may be leveraged to build models of such dynamic skills. To accomplish this, the learning model needs to encode a stable vector field that resembles the desired motion dynamics. This is challenging as the robot state does not evolve on a Euclidean space, and therefore the stability guarantees and vector field encoding need to account for the geometry arising from, for example, the orientation representation. To tackle this problem, we propose learning Riemannian stable dynamical systems (RSDS) from demonstrations, allowing us to account for different geometric constraints resulting from the dynamical system state representation. Our approach provides Lyapunov-stability guarantees on Riemannian manifolds that are enforced on the desired motion dynamics via diffeomorphisms built on neural manifold ODEs. We show that our Riemannian approach makes it possible to learn stable dynamical systems displaying complicated vector fields on both illustrative examples and real-world manipulation tasks, where Euclidean approximations fail.