论文标题
无线集群无线联合学习
Over-The-Air Clustered Wireless Federated Learning
论文作者
论文摘要
隐私和带宽的约束导致在无线系统中使用联合学习(FL),在无线系统中,训练机器学习(ML)模型是合作完成的,而无需共享原始数据。在使用带宽受限的上行链路无线通道时,首选播放(OTA)FL,因为客户端可以同时发送参数更新到服务器。由于延迟和服务器故障的增加,强大的服务器可能无法用于参数聚合。在没有功能强大的服务器的情况下,采用了分散的策略,客户与邻居进行沟通以获得共识ML模型,同时产生巨大的沟通成本。在这项工作中,我们提出了OTA半分配的群集无线FL(CWFL)和CWFL-PROX算法,与分散的FL策略相比,该算法的通信有效,而参数更新为每个集群的全局最小值(1/T)。使用MNIST和CIFAR10数据集,我们证明了CWFL的准确性性能可与基于中央服务器的COTAF和基于近端约束的方法相媲美,同时通过巨大的准确性来击败基于单克的ML模型。
Privacy and bandwidth constraints have led to the use of federated learning (FL) in wireless systems, where training a machine learning (ML) model is accomplished collaboratively without sharing raw data. While using bandwidth-constrained uplink wireless channels, over-the-air (OTA) FL is preferred since the clients can transmit parameter updates simultaneously to a server. A powerful server may not be available for parameter aggregation due to increased latency and server failures. In the absence of a powerful server, decentralised strategy is employed where clients communicate with their neighbors to obtain a consensus ML model while incurring huge communication cost. In this work, we propose the OTA semi-decentralised clustered wireless FL (CWFL) and CWFL-Prox algorithms, which is communication efficient as compared to the decentralised FL strategy, while the parameter updates converge to global minima as O(1/T) for each cluster. Using the MNIST and CIFAR10 datasets, we demonstrate the accuracy performance of CWFL is comparable to the central-server based COTAF and proximal constraint based methods, while beating single-client based ML model by vast margins in accuracy.