论文标题
多边形空间的磁盘电势函数
Disk potential functions for polygon spaces
论文作者
论文摘要
我们为等边和通用多边形空间提供了一个地板理论syz镜子。毛毛虫弯曲系统的单调圆环纤维的磁盘潜在功能是通过计算单调福卡亚类别的结构结果的非平凡开放式gromov,这是完全集成系统的纤维的拓扑结构和圆润变性的。然后,将结果与Nohara-ouda [Nu20]和Marsh-Rietsch [MR20]的工作相结合,我们获得了弯曲系统的磁盘电势功能,并通过Lagrangian Floer Theory产生了A型A型a型群簇的差异。
We derive a Floer theoretical SYZ mirror for an equilateral and generic polygon space. The disk potential function of the monotone torus fiber of the caterpillar bending system is calculated by computing non-trivial open Gromov--Witten invariants from the structural result of the monotone Fukaya category, the topology of fibers of completely integrable systems, and toric degenerations. Then, combining the result with the work of Nohara--Ueda [NU20] and Marsh--Rietsch [MR20], we obtain the disk potential functions of bending systems and produce a mirror cluster variety of type A without frozen variables via Lagrangian Floer theory.