论文标题

CASA:类别不足的骨骼动物重建

CASA: Category-agnostic Skeletal Animal Reconstruction

论文作者

Wu, Yuefan, Chen, Zeyuan, Liu, Shaowei, Ren, Zhongzheng, Wang, Shenlong

论文摘要

从单眼视频中恢复动物的骨骼形状是一个长期的挑战。盛行的动物重建方法通常采用控制点驱动的动画模型,并在不考虑骨骼拓扑的情况下单独优化骨骼变换,从而产生不令人满意的形状和表达。相比之下,人类可以通过将其与可见的表达性格相关联,可以轻松地推断出未知动物的发音结构。在这个事实的启发下,我们提出了CASA,这是一种新型类别 - 敏捷的骨骼动物重建方法,该方法由两个主要组成部分组成:视频到形状检索过程和神经逆图形图形框架。在推断期间,CASA首先从3D字符资产库中检索出明确的形状,因此根据验证的语言视觉模型,输入视频与渲染图像相比得分很高。然后,CASA将检索到的字符集成到一个反图形框架中,并通过优化共同渗透形状变形,骨架结构和皮肤重量。实验验证了CASA在形状重建和发音方面的功效。我们进一步证明,可以将所得的骨骼动画特征用于重新动画。

Recovering the skeletal shape of an animal from a monocular video is a longstanding challenge. Prevailing animal reconstruction methods often adopt a control-point driven animation model and optimize bone transforms individually without considering skeletal topology, yielding unsatisfactory shape and articulation. In contrast, humans can easily infer the articulation structure of an unknown animal by associating it with a seen articulated character in their memory. Inspired by this fact, we present CASA, a novel Category-Agnostic Skeletal Animal reconstruction method consisting of two major components: a video-to-shape retrieval process and a neural inverse graphics framework. During inference, CASA first retrieves an articulated shape from a 3D character assets bank so that the input video scores highly with the rendered image, according to a pretrained language-vision model. CASA then integrates the retrieved character into an inverse graphics framework and jointly infers the shape deformation, skeleton structure, and skinning weights through optimization. Experiments validate the efficacy of CASA regarding shape reconstruction and articulation. We further demonstrate that the resulting skeletal-animated characters can be used for re-animation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源