论文标题
宇宙学中的量子重力和比例对称性
Quantum gravity and scale symmetry in cosmology
论文作者
论文摘要
我们讨论了宇宙学的预测,这是由功能流程方程的缩放解决方案引起的,重力理论。缩放解决方案是使量子重力重新分配的必要条件。我们的缩放解决方案直接连接到与标量场耦合的度量的量子有效作用。它包括量子波动的所有效果,并且在一般坐标转换下是不变的。通过量子有效作用变化得出的宇宙磁场方程提供了对宇宙进化的详细定量描述。发现宇宙的\ qq {开始状态}靠近流程方程的紫外线固定点。它可以通过通货膨胀时期来描述,观察到的原始波动光谱的尺度不变性近似,用近似量子标准对称性解释。总体宇宙学实现了从紫外线固定点到红外固定点的动态跨界,该点在无限的未来已接近。当前的宇宙学接近红外固定点。它具有由光标度场介导的动态暗能量。这种cosmon的微小质量源于其作为自发折断量表对称性的伪金石玻色子的作用。由于宇宙的巨大年龄,普朗克单元中目前的暗能量密度的极小价值产生了动态。宇宙常数问题找到了动态解决方案。我们为标量有效势和曲率标量的场依赖性系数提供了缩放解决方案的详细定量计算。这允许进一步的定量预测。
We discuss predictions for cosmology which result from the scaling solution of functional flow equations for a quantum field theory of gravity. A scaling solution is necessary to render quantum gravity renormalizable. Our scaling solution is directly connected to the quantum effective action for the metric coupled to a scalar field. It includes all effects of quantum fluctuations and is invariant under general coordinate transformations. Solving the cosmological field equations derived by variation of the quantum effective action provides for a detailed quantitative description of the evolution of the universe. The \qq{beginning state} of the universe is found close to an ultraviolet fixed point of the flow equation. It can be described by an inflationary epoch, with approximate scale invariance of the observed primordial fluctuation spectrum explained by approximate quantum scale symmetry. Overall cosmology realizes a dynamical crossover from the ultraviolet fixed point to an infrared fixed point which is approached in the infinite future. Present cosmology is close to the infrared fixed point. It features dynamical dark energy mediated by a light scalar field. The tiny mass of this cosmon arises from its role as a pseudo Goldstone boson of spontaneously broken quantum scale symmetry. The extremely small value of the present dark energy density in Planck units results dynamically as a consequence of the huge age of the universe. The cosmological constant problem finds a dynamical solution. We present a detailed quantitative computation of the scaling solution for the scalar effective potential and the field-dependent coefficient of the curvature scalar. This allows for further quantitative predictions.