论文标题
通过分位数几何形状增强图神经网络色谱对映射的保留时间预测
Retention Time Prediction for Chromatographic Enantioseparation by Quantile Geometry-enhanced Graph Neural Network
论文作者
论文摘要
提出了一个新的研究框架,以将机器学习技术纳入实验化学领域,以促进色谱映体的分化。建立了高性能液相色谱中手性分子保留时间(CMRT数据集)的纪录片数据集,以应对数据获取的挑战。基于CMRT数据集,提出了一个分位数几何形状增强的图形神经网络来学习分子结构 - 保留时间关系,该关系显示了对映异构体的令人满意的预测能力。色谱的域知识被纳入机器学习模型中,以实现多列预测,这通过计算分离概率来为色谱对映射预测铺平了道路。实验证实,所提出的研究框架在保留时间预测和色谱对映体的促进方面效果很好,该框架阐明了机器学习技术在实验场景中的应用,并提高了实验者对加快科学发现的效率。
A new research framework is proposed to incorporate machine learning techniques into the field of experimental chemistry to facilitate chromatographic enantioseparation. A documentary dataset of chiral molecular retention times (CMRT dataset) in high-performance liquid chromatography is established to handle the challenge of data acquisition. Based on the CMRT dataset, a quantile geometry-enhanced graph neural network is proposed to learn the molecular structure-retention time relationship, which shows a satisfactory predictive ability for enantiomers. The domain knowledge of chromatography is incorporated into the machine learning model to achieve multi-column prediction, which paves the way for chromatographic enantioseparation prediction by calculating the separation probability. Experiments confirm that the proposed research framework works well in retention time prediction and chromatographic enantioseparation facilitation, which sheds light on the application of machine learning techniques to the experimental scene and improves the efficiency of experimenters to speed up scientific discovery.