论文标题

互动狄拉克半学的分类

Classification of Interacting Dirac Semimetals

论文作者

Huang, Sheng-Jie, Yu, Jiabin, Zhang, Rui-Xing

论文摘要

拓扑结构理论预测单粒子级别的三维(3D)DIRAC半学(DSMS)的$ \ Mathbb {Z} $分类。也就是说,只要保留了保护对称性,就将始终在单粒子带谱中保持局部稳定且无间隙。在这项工作中,我们发现,在Symmetry-Metermetry-Proweserving Electron相互作用的情况下。我们的理论基于一个维数策略,该策略将3D DIRAC费物减少到1D构建块,即涡流模式,同时尊重所有关键对称性。使用持续化技术,我们发现存在最小的数字$ n = n/\ text {gcd}(2,n)$,因此可以通过四率交互在$ n $副本中收集$ n $ dsms中的涡旋模式。尽管这种间隙机制没有任何自由行,但它产生了直观的``电子曲线耦合''图片。通过开发用于DSM的拓扑字段理论并进一步检查无异常的条件,我们独立地获得了相同的分类结果。我们的理论paves了解拓扑表层次的半阶段阶段,是强有力的范围。

Topological band theory predicts a $\mathbb{Z}$ classification of three-dimensional (3D) Dirac semimetals (DSMs) at the single-particle level. Namely, an arbitrary number of identical bulk Dirac nodes will always remain locally stable and gapless in the single-particle band spectrum, as long as the protecting symmetry is preserved. In this work, we find that this single-particle classification for $C_n$-symmetric DSMs will break down to $\mathbb{Z}_{n/\text{gcd}(2,n)}$ in the presence of symmetry-preserving electron interactions. Our theory is based on a dimensional reduction strategy which reduces a 3D Dirac fermions to 1D building blocks, i.e., vortex-line modes, while respecting all the key symmetries. Using bosonization technique, we find that there exists a minimal number $N=n/\text{gcd}(2,n)$ such that the collection of vortex-line modes in $N$ copies of DSMs can be symmetrically eliminated via four-fermion interactions. While this gapping mechanism does not have any free-fermion counterpart, it yields an intuitive ``electron-trion coupling" picture. By developing a topological field theory for DSMs and further checking the anomaly-free condition, we independently arrive at the same classification results. Our theory paves the way for understanding topological crystalline semimetallic phases in the strongly correlated regime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源