论文标题

SLICT:多输入多尺度基于表面的LIDAR惯性连续时光和映射

SLICT: Multi-input Multi-scale Surfel-Based Lidar-Inertial Continuous-Time Odometry and Mapping

论文作者

Nguyen, Thien-Minh, Duberg, Daniel, Jensfelt, Patric, Yuan, Shenghai, Xie, Lihua

论文摘要

虽然特征与全球地图具有重大的好处,但要防止计算呈指数增长,但大多数基于激光雷达的探测仪和映射方法选择将特征与本地地图相关联。利用这一事实是,可以在类似树状的结构中组织出不同体素尺度的表面(表面元素),我们提出了一个基于OCTREE的多尺度表面的全局映射,可以逐步更新。这样可以缓解重新计算整个地图的K-D树的必要性。该系统还可以从单个或多个传感器中获取输入,从而在退化的情况下增强了鲁棒性。我们还提出了一个点对上(PTS)关联方案,对PTS和IMU前整合因子的连续时间优化,以及循环闭合和束调整,为LIDAR持续连续的时探针和映射提供了完整的框架。与其他最先进的方法相比,公共和内部数据集的实验证明了我们系统的优势。为了使社区受益,我们在https://github.com/brytsknguyen/slict上发布源代码和数据集。

While feature association to a global map has significant benefits, to keep the computations from growing exponentially, most lidar-based odometry and mapping methods opt to associate features with local maps at one voxel scale. Taking advantage of the fact that surfels (surface elements) at different voxel scales can be organized in a tree-like structure, we propose an octree-based global map of multi-scale surfels that can be updated incrementally. This alleviates the need for recalculating, for example, a k-d tree of the whole map repeatedly. The system can also take input from a single or a number of sensors, reinforcing the robustness in degenerate cases. We also propose a point-to-surfel (PTS) association scheme, continuous-time optimization on PTS and IMU preintegration factors, along with loop closure and bundle adjustment, making a complete framework for Lidar-Inertial continuous-time odometry and mapping. Experiments on public and in-house datasets demonstrate the advantages of our system compared to other state-of-the-art methods. To benefit the community, we release the source code and dataset at https://github.com/brytsknguyen/slict.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源