论文标题
部分可观测时空混沌系统的无模型预测
$T$-depth-optimized Quantum Search with Quantum Data-access Machine
论文作者
论文摘要
量子搜索算法提供了使用量子叠加原理二次降低查询复杂性的显着优势。但是,到目前为止,实际体系结构如何以量子超级状态访问和处理数据库。简单地假定,数据的量子状态是由黑盒操作制备和访问的 - 即使设计(即使设计得不适当)也可能会对量子查询优势降低,即使此过程(即使不是适当的)。在这里,我们引入了一个有效的量子数据访问过程,称为量子数据访问机(QDAM),并提供了用于量子搜索算法的一般体系结构。根据有效的量子误差校正代码中的逻辑Qubits,我们分析了算法量子计算(FTQC)的运行时间。具体而言,我们介绍了一项涉及两个计算复杂性的措施,即量子查询和$ t $ - 深度复杂性,这对于评估性能至关重要,因为逻辑非克利福德门(例如$ t $(即$π/8 $旋转)门)是在FTQC中实施的最昂贵的。我们的分析表明,对于$ n $搜索数据,QDAM模型显示对数,即$ o(\ log {n})$,可以构建$ t $ - 深度复杂性的增长。进一步的分析表明,我们的QDAM添加量子搜索需要$ O(\ sqrt {n} \ times \ log {n})$运行时成本。因此,我们的研究表明,量子数据搜索算法可以通过对数$ t $ -Depth QDAM作为关键组件真正加快经典方法的速度。
Quantum search algorithms offer a remarkable advantage of quadratic reduction in query complexity using quantum superposition principle. However, how an actual architecture may access and handle the database in a quantum superposed state has been largely unexplored so far; the quantum state of data was simply assumed to be prepared and accessed by a black-box operation -- so-called oracle, even though this process, if not appropriately designed, may adversely diminish the quantum query advantage. Here, we introduce an efficient quantum data-access process, dubbed as quantum data-access machine (QDAM), and present a general architecture for quantum search algorithm. We analyze the runtime of our algorithm in view of the fault-tolerant quantum computation (FTQC) consisting of logical qubits within an effective quantum error correction code. Specifically, we introduce a measure involving two computational complexities, i.e. quantum query and $T$-depth complexities, which can be critical to assess performance since the logical non-Clifford gates, such as the $T$ (i.e., $π/8$ rotation) gate, are known to be costliest to implement in FTQC. Our analysis shows that for $N$ searching data, a QDAM model exhibiting a logarithmic, i.e., $O(\log{N})$, growth of the $T$-depth complexity can be constructed. Further analysis reveals that our QDAM-embedded quantum search requires $O(\sqrt{N} \times \log{N})$ runtime cost. Our study thus demonstrates that the quantum data search algorithm can truly speed up over classical approaches with the logarithmic $T$-depth QDAM as a key component.