论文标题

Nimbus:通过输入调整和多任务学习,迈向加速功能签名恢复

Nimbus: Toward Speed Up Function Signature Recovery via Input Resizing and Multi-Task Learning

论文作者

Qian, Yi, Chen, Ligeng, Wang, Yuyang, Mao, Bing

论文摘要

功能签名恢复对于许多二进制分析任务,例如控制流的完整性执法,克隆检测和错误查找非常重要。现有的作品试图用基于规则的方法替代基于学习的方法来减少人类的努力。它们为增强系统的性能做出了巨大的努力,这也带来了更高资源消费的副作用。但是,恢复功能签名更多是为了为后续任务提供信息,效率和性能都很重要。 在本文中,我们首先提出了一种称为nimbus的方法,用于有效的功能签名恢复,该方法最远地减少了整个过程的资源消耗而不会损失绩效。由于信息偏见和任务关系(即参数计数与参数类型恢复之间的关系),我们利用选择性输入并引入多任务学习(MTL)结构来签名签名恢复以减少计算资源消耗,并充分利用共同信息。我们的实验结果表明,仅在最新方法的八分之一处理时间上,我们甚至在所有功能签名恢复任务上都取得了约1%的预测准确性。

Function signature recovery is important for many binary analysis tasks such as control-flow integrity enforcement, clone detection, and bug finding. Existing works try to substitute learning-based methods with rule-based methods to reduce human effort.They made considerable efforts to enhance the system's performance, which also bring the side effect of higher resource consumption. However, recovering the function signature is more about providing information for subsequent tasks, and both efficiency and performance are significant. In this paper, we first propose a method called Nimbus for efficient function signature recovery that furthest reduces the whole-process resource consumption without performance loss. Thanks to information bias and task relation (i.e., the relation between parameter count and parameter type recovery), we utilize selective inputs and introduce multi-task learning (MTL) structure for function signature recovery to reduce computational resource consumption, and fully leverage mutual information. Our experimental results show that, with only about the one-eighth processing time of the state-of-the-art method, we even achieve about 1% more prediction accuracy over all function signature recovery tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源