论文标题
蜂窝哈伯德模型中纠缠熵的通用特征
Universal features of entanglement entropy in the honeycomb Hubbard model
论文作者
论文摘要
纠缠熵是揭示强烈相互作用多体系统的通用特征的独特探针。在两个或多个维度中,这些特征是微妙的,并且在数值上检测它们需要极高的精度,这是一个众所周知的艰巨任务。在相互作用的费米子模型中,这尤其具有挑战性,在这些模型中,许多这样的普遍特征尚未观察到。在本文中,我们通过引入一种在辅助场量子蒙特卡洛模拟中计算Rényi纠缠熵的新方法来应对这一挑战,在此我们将纠缠区域本身视为随机变量。我们通过首次在相互作用的费米子的二维模型中提取通用的超级对数项来证明该方法的效率,重点是$ t = 0 $的半填充蜂窝哈伯德模型。我们检测到整个DIRAC半金属阶段的无间隙费米的通用角贡献以及在总纽卡瓦的临界点上,后者根据纠缠切割的类型显示出明显的增强。最后,我们观察到抗磁性莫特绝缘阶段的通用金石模式贡献。
The entanglement entropy is a unique probe to reveal universal features of strongly interacting many-body systems. In two or more dimensions these features are subtle, and detecting them numerically requires extreme precision, a notoriously difficult task. This is especially challenging in models of interacting fermions, where many such universal features have yet to be observed. In this paper we tackle this challenge by introducing a new method to compute the Rényi entanglement entropy in auxiliary-field quantum Monte Carlo simulations, where we treat the entangling region itself as a stochastic variable. We demonstrate the efficiency of this method by extracting, for the first time, universal subleading logarithmic terms in a two dimensional model of interacting fermions, focusing on the half-filled honeycomb Hubbard model at $T=0$. We detect the universal corner contribution due to gapless fermions throughout the Dirac semi-metal phase and at the Gross-Neveu-Yukawa critical point, where the latter shows a pronounced enhancement depending on the type of entangling cut. Finally, we observe the universal Goldstone mode contribution in the antiferromagnetic Mott insulating phase.