论文标题
没有涡旋脱落的胡须中的自我维持的振荡
Self-sustained oscillations in whiskers without vortex shedding
论文作者
论文摘要
感知水或空气障碍的流动对于许多动物的存活至关重要:流动信息可以帮助它们定位食物,伴侣和猎物并逃避捕食者。在整个物种之间,许多流动传感器采用长而灵活的悬臂的形式。已知这些悬臂与流体流相互作用时会表现出持续的振荡。在存在涡旋脱落的情况下,振荡通过唤醒或涡流诱导的振动等机制发生。但是,没有明确的解释,即管理柔性悬臂持续振荡而没有涡旋脱落的机制。在最近的工作中,我们表明,柔性圆柱悬臂可以在其在雷诺数量低于关键雷诺涡流数量的雷诺数量的水中的第一个自然振动模式下持续振荡。振荡被证明是由流频率和悬臂的第一模式固有频率之间的频率匹配(同步)驱动的。在这里,我们使用基于Navier-Stokes和非线性结构方程的车身构造的流体结构求解器来模拟空气中悬臂晶须的动力学,并以雷诺数的亚临界值的速度值。结果表明,第二模式同步控制了晶须的持续振荡。剪切层中的波浪形图案在振动期间主导了晶须的唤醒,表明平行剪切层与晶须的运动同步。由于这种同步,沿晶须观察到具有匹配的流向和交叉流动振动频率的椭圆形运动轨迹。这项研究的结果提出了设计人工生物启发的流动传感器的可能方向。
Sensing the flow of water or air disturbance is critical for the survival of many animals: flow information helps them localize food, mates, and prey and to escape predators. Across species, many flow sensors take the form of long, flexible cantilevers. These cantilevers are known to exhibit sustained oscillations when interacting with fluid flow. In the presence of vortex shedding, the oscillations occur through mechanisms such as wake- or vortex-induced vibrations. There is, however, no clear explanation for the mechanisms governing the sustained oscillation of flexible cantilevers without vortex shedding. In recent work, we showed that a flexible cylindrical cantilever could experience sustained oscillations in its first natural vibration mode in water at Reynolds numbers below the critical Reynolds number of vortex shedding. The oscillations were shown to be driven by a frequency match (synchronization) between the flow frequency and the cantilever's first-mode natural frequency. Here, we use a body-fitted fluid-structure solver based on the Navier-Stokes and nonlinear structural equations to simulate the dynamics of a cantilevered whisker in the air at a subcritical value of Reynolds number. Results show that second-mode synchronization governs the whisker's sustained oscillation. Wavy patterns in the shear layer dominate the whisker's wake during the vibrations, indicating that parallel shear layers synchronize with the whisker's motion. As a result of this synchronization, oval-shaped motion trajectories, with matching streamwise and cross-flow vibration frequencies, are observed along the whisker. The outcomes of this study suggest possible directions for designing artificial bio-inspired flow sensors.