论文标题
Čech-de rham综合体上的霍奇 - 拉普拉斯人控制了耦合问题
The Hodge-Laplacian on the Čech-de Rham complex governs coupled problems
论文作者
论文摘要
通过赋予具有希尔伯特空间结构的čech-de rham复合体,我们获得了具有足够特性的希尔伯特复合物,以允许良好的霍奇 - 宽面条问题。我们观察到,这些hodge-laplace方程控制着由物理系统引起的一类耦合问题,包括弹性附着的字符串,多孔隙度流量系统和3D-1D耦合流模型。
By endowing the Čech-de Rham complex with a Hilbert space structure, we obtain a Hilbert complex with sufficient properties to allow for well-posed Hodge-Laplace problems. We observe that these Hodge-Laplace equations govern a class of coupled problems arising from physical systems including elastically attached strings, multiple-porosity flow systems and 3D-1D coupled flow models.