论文标题
IRNET:嘈杂的部分标签学习的迭代完善网络
IRNet: Iterative Refinement Network for Noisy Partial Label Learning
论文作者
论文摘要
部分标签学习(PLL)是一种典型的弱监督学习,每个样本都与一组候选标签相关联。 PLL的基本假设是地面真相标签必须位于候选集合中。但是,由于注释者的非专业判断,可能无法满足此假设,从而限制了PLL的实际应用。在本文中,我们放松了这个假设,并关注一个更普遍的问题,即嘈杂的PLL,在候选集合中可能不存在地面真相标签。为了解决这个具有挑战性的问题,我们提出了一个名为“迭代精致网络(IRNET)”的新颖框架。它旨在通过两个关键模块纯化嘈杂的样品,即嘈杂的样品检测和标签校正。理想情况下,如果所有嘈杂的样品均得到纠正,我们可以将嘈杂的PLL转换为传统的PLL。为了确保这些模块的性能,我们从热身培训和利用数据扩展开始,以减少预测错误。通过理论分析,我们证明IRNET能够降低数据集的噪声水平,并最终近似贝叶斯最佳分类器。多个基准数据集的实验结果证明了我们方法的有效性。 IRNET优于嘈杂的PLL现有的最新方法。
Partial label learning (PLL) is a typical weakly supervised learning, where each sample is associated with a set of candidate labels. The basic assumption of PLL is that the ground-truth label must reside in the candidate set. However, this assumption may not be satisfied due to the unprofessional judgment of the annotators, thus limiting the practical application of PLL. In this paper, we relax this assumption and focus on a more general problem, noisy PLL, where the ground-truth label may not exist in the candidate set. To address this challenging problem, we propose a novel framework called "Iterative Refinement Network (IRNet)". It aims to purify the noisy samples by two key modules, i.e., noisy sample detection and label correction. Ideally, we can convert noisy PLL into traditional PLL if all noisy samples are corrected. To guarantee the performance of these modules, we start with warm-up training and exploit data augmentation to reduce prediction errors. Through theoretical analysis, we prove that IRNet is able to reduce the noise level of the dataset and eventually approximate the Bayes optimal classifier. Experimental results on multiple benchmark datasets demonstrate the effectiveness of our method. IRNet is superior to existing state-of-the-art approaches on noisy PLL.