论文标题
恢复测量精度的计量学量子优势在嘈杂的情况下
Restoring metrological quantum advantage of measurement precision in noisy scenario
论文作者
论文摘要
我们表明,在存在局部和不相关的噪声噪声的情况下,可以在估算哈密顿量系统参数的最小不确定性的基于Fisher信息的下限中获得量子优势。量子优势在这里指的是用最大纠缠状态而不是产品发起的好处。对于频率估计协议,在相同的噪声场景中已知这种量子优势在相同的噪声场景中消失。可以通过结合系统颗粒之间的相互作用来获得最大纠缠探针的频率估计更好的精度。此处检查的相互作用在本质上是在本质上,并且在有或没有横向磁场的情况下被视为。有一些实例,例如如果考虑存在横向场中的频率估计,并且未恢复量子优势。在估算沿横向方向引入的磁场的强度时,也可以获得量子优势,而对于考虑的实例,使用不相关的探针在测量ISING相互作用的耦合参数方面更好。我们还研究了测量精度对纠缠含量的依赖性,这不一定是初始状态的最大值。耦合常数的估计精度随着初始状态的纠缠含量的增加而单调降低,而频率估计的纠缠含量相同,与输入的纠缠含量无关。
We show that in presence of a local and uncorrelated dephasing noise, quantum advantage can be obtained in the Fisher information-based lower bound of the minimum uncertainty in estimating parameters of the system Hamiltonian. The quantum advantage refers here to the benefit of initiating with a maximally entangled state instead of a product one. This quantum advantage was known to vanish in the same noisy scenario for a frequency estimation protocol. Restoration of the better precision in frequency estimation with maximally entangled probes can be obtained by incorporating an interaction between the system particles. The interaction examined here is Ising in nature, and is considered with or without a transverse magnetic field. There are instances, e.g. where frequency estimation in presence of a transverse field is considered and quantum advantage is not restored. A quantum advantage can also be obtained while estimating the strength of the introduced magnetic field along the transverse direction, whereas for the instances considered, using uncorrelated probes is better in measuring the coupling parameter of the Ising interaction. We also investigate the dependence of measurement precision on the entanglement content, which is not necessarily maximal, of the initial state. The precision in estimation of coupling constant decreases monotonically with the increase of entanglement content of the initial state, while the same for frequency estimation is independent of the entanglement content of the inputs.