论文标题
$(1+1)的超对称背景$尺寸和不均匀的领域理论
Supersymmetric Backgrounds in $(1+1)$ Dimensions and Inhomogeneous Field Theory
论文作者
论文摘要
我们找到了一种$(1+1)$ - 尺寸度量解决方案,用于背景,该背景托有具有单个非手续实际增压的各种超对称场理论。这种超对称背景是全球双曲线,即使它包含赤裸裸的奇异性。在这方面,我们表明背景上的标量波传播定义明确,因此曲率奇异性是一个{\ it pimper}。从我们以前的工作中汲取灵感,我们将这种弯曲背景的现场理论与超对称设置中的某些类别(1+1)$ - 维度不均匀的场理论联系起来。利用我们的超对称背景,我们阐明了规范量化的局限性,并强调了代数量化方法的概念优势。
We find a $(1+1)$-dimensional metric solution for a background hosting various supersymmetric field theories with a single non-chiral real supercharge. This supersymmetric background is globally hyperbolic even though it contains a naked null singularity. In this regard, we show that scalar wave propagation on the background is well-defined and so the curvature singularity is a {\it mild} one. Taking inspiration from our previous work, we relate the field theory on this curved background to some classes of $(1+1)$-dimensional inhomogeneous field theory in the supersymmetric setup. Utilizing our supersymmetric background, we elucidate the limitations of canonical quantization and highlight the conceptual advantages of the algebraic approach to quantization.