论文标题

一个机器学习系统,以监控教育机构的学生进度

A Machine Learning system to monitor student progress in educational institutes

论文作者

Mahakud, Bibhuprasad, Parida, Bibhuti, Panda, Ipsit, Maity, Souvik, Sahoo, Arpita, Sharma, Reeta

论文摘要

为了跟踪和理解学生的学术成就,私立和公共教育机构都投入了大量资源和劳动力。机构定期处理的困难问题之一是了解学生的考试缺点。学生的表现受到各种因素的影响,包括出勤,班上的专心,对教学的概念的理解,有效地交付材料的能力,及时完成家庭作业,以及父母和老师的关注,以指导学生通过学习过程。我们提出了一种数据驱动的方法,该方法利用机器学习技术来生成一个名为“信用评分”的分类器,该分类器有助于理解学生的学习旅行并确定导致表现不佳的活动。这将使教育工作者和研究管理层更容易为系统开发提高生产率创建指南。将使用信用评分作为进度指标的建议非常适合用于学习管理系统。在本文中,我们使用模拟数据证明了在简化假设下的概念证明。

In order to track and comprehend the academic achievement of students, both private and public educational institutions devote a significant amount of resources and labour. One of the difficult issues that institutes deal with on a regular basis is understanding the exam shortcomings of students. The performance of a student is influenced by a variety of factors, including attendance, attentiveness in class, understanding of concepts taught, the teachers ability to deliver the material effectively, timely completion of home assignments, and the concern of parents and teachers for guiding the student through the learning process. We propose a data driven approach that makes use of Machine Learning techniques to generate a classifier called credit score that helps to comprehend the learning journeys of students and identify activities that lead to subpar performances. This would make it easier for educators and institute management to create guidelines for system development to increase productivity. The proposal to use credit score as progress indicator is well suited to be used in a Learning Management System. In this article, we demonstrate the proof of the concept under simplified assumptions using simulated data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源