论文标题
BF拓扑理论的可集成性和BRST不变性
Integrability and BRST invariance from BF topological theory
论文作者
论文摘要
我们考虑了$ 1+1 $尺寸的非 - 亚伯BF拓扑理论的BRST不变有效动作,量规组$ sl(2,\ Mathbb {r})$。通过考虑不同的尺寸固定条件,零曲率场方程产生了几个众所周知的可集成方程。我们证明,从BF理论获得的每个可集成方程以及相关的幽灵场演化方程是一个BRST不变的系统,具有无限的BRST不变量的序列。我们明确构建KDV序列(包括KDV,MKDV和CKDV方程)的系统和BRST转换定律和Harry DYM可集成方程。
We consider the BRST invariant effective action of the non-abelian BF topological theory in $1+1$ dimensions with gauge group $Sl(2,\mathbb{R})$. By considering different gauge fixing conditions, the zero-curvature field equation give rise to several well known integrable equations. We prove that each integrable equation together with the associated ghost field evolution equation, obtained from the BF theory, is a BRST invariant system with an infinite sequence of BRST invariant conserved quantities. We construct explicitly the systems and the BRST transformation laws for the KdV sequence (including the KdV, mKdV and CKdV equations) and Harry Dym integrable equation.