论文标题

行为树来创建对话解释经验

Behaviour Trees for Creating Conversational Explanation Experiences

论文作者

Wijekoon, Anjana, Corsar, David, Wiratunga, Nirmalie

论文摘要

本文提出了XAI系统规范和交互式对话模型,以促进解释体验的创建(EE)。这些规格结合了用例形式化目标用户群体及其解释需求的XAI,域和系统专家的知识,并实施解释策略来满足这些需求。正式化XAI系统可以通过用户评估反馈随着时间的流逝而随着时间的流逝而改进和进化的现有解释器的重复使用和已知的解释需求。抽象的EE对话模型正式化了用户与XAI系统之间的相互作用。生成的EE对话聊天机器人在运行时使用其XAI系统规范中捕获的知识将其个性化为XAI系统。通过使用行为树(BT)来概念化EE对话模型和解释策略,可以实现这种无缝集成。在评估中,我们讨论了与传统使用的STM或FSM一起使用BTS的几种理想属性。 BTS通过设计的层次结构来促进对话组件的可重复性。子树是模块化的,即子树是负责特定行为的负责,可以以不同层次的粒度设计以改善人类的解释性。 EE对话模型由捕获EE所需的抽象行为组成,因此,它可以作为对话,图形或基于文本的接口实现,该界面符合不同的域和用户。当使用BTS进行建模对话时,我们会通过使用内存来减轻对话的建模。总体而言,我们发现动态创建强大的对话途径的能力使BTS成为设计和实施对话以创建解释体验的良好候选人。

This paper presented an XAI system specification and an interactive dialogue model to facilitate the creation of Explanation Experiences (EE). Such specifications combine the knowledge of XAI, domain and system experts of a use case to formalise target user groups and their explanation needs and to implement explanation strategies to address those needs. Formalising the XAI system promotes the reuse of existing explainers and known explanation needs that can be refined and evolved over time using user evaluation feedback. The abstract EE dialogue model formalised the interactions between a user and an XAI system. The resulting EE conversational chatbot is personalised to an XAI system at run-time using the knowledge captured in its XAI system specification. This seamless integration is enabled by using Behaviour Trees (BT) to conceptualise both the EE dialogue model and the explanation strategies. In the evaluation, we discussed several desirable properties of using BTs over traditionally used STMs or FSMs. BTs promote the reusability of dialogue components through the hierarchical nature of the design. Sub-trees are modular, i.e. a sub-tree is responsible for a specific behaviour, which can be designed in different levels of granularity to improve human interpretability. The EE dialogue model consists of abstract behaviours needed to capture EE, accordingly, it can be implemented as a conversational, graphical or text-based interface which caters to different domains and users. There is a significant computational cost when using BTs for modelling dialogue, which we mitigate by using memory. Overall, we find that the ability to create robust conversational pathways dynamically makes BTs a good candidate for designing and implementing conversation for creating explanation experiences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源