论文标题

Neuroceril:通过层次效应推理在可编程吸引子神经网络中通过层次效应推理学习的机器人模仿学习

NeuroCERIL: Robotic Imitation Learning via Hierarchical Cause-Effect Reasoning in Programmable Attractor Neural Networks

论文作者

Davis, Gregory P., Katz, Garrett E., Gentili, Rodolphe J., Reggia, James A.

论文摘要

模仿学习使社交机器人可以在没有大量手动编程的情况下向人类教师学习新技能,但是机器人模仿学习系统很难概括演示的技能以及人类的学习者。当代神经计算方法模仿学习以数据密集型培训成本实现有限的概括,并且通常会产生难以理解和调试的不透明模型。在这项研究中,我们探讨了为社会机器人开发纯粹的神经控制器的生存能力,这些机器人通过推理了展示行为的潜在意图来学会模仿。我们提出了神经内膜,这是一种脑启发的神经认知结构,使用一种新型的假设脱离推理程序来产生可概括和人类可读的解释,以证明行为。这种方法将自下而上的绑架性推断与自上而下的预测验证相结合,并捕获了与广泛的认知领域相关的人类因果推理的重要方面。我们的经验结果表明,神经塞氏菌可以在模拟的机器人模仿学习领域中学习各种程序技能。我们还表明,其因果推理过程在计算上是有效的,并且其内存的使用源于高度瞬态的短期记忆,就像人类的工作记忆一样。我们得出的结论是,神经内膜是一种可行的人类模仿学习的神经模型,可以改善人类机器人的协作,并有助于研究人类认知的神经计算基础。

Imitation learning allows social robots to learn new skills from human teachers without substantial manual programming, but it is difficult for robotic imitation learning systems to generalize demonstrated skills as well as human learners do. Contemporary neurocomputational approaches to imitation learning achieve limited generalization at the cost of data-intensive training, and often produce opaque models that are difficult to understand and debug. In this study, we explore the viability of developing purely-neural controllers for social robots that learn to imitate by reasoning about the underlying intentions of demonstrated behaviors. We present NeuroCERIL, a brain-inspired neurocognitive architecture that uses a novel hypothetico-deductive reasoning procedure to produce generalizable and human-readable explanations for demonstrated behavior. This approach combines bottom-up abductive inference with top-down predictive verification, and captures important aspects of human causal reasoning that are relevant to a broad range of cognitive domains. Our empirical results demonstrate that NeuroCERIL can learn various procedural skills in a simulated robotic imitation learning domain. We also show that its causal reasoning procedure is computationally efficient, and that its memory use is dominated by highly transient short-term memories, much like human working memory. We conclude that NeuroCERIL is a viable neural model of human-like imitation learning that can improve human-robot collaboration and contribute to investigations of the neurocomputational basis of human cognition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源