论文标题

相分离的DNA液滴的空间组织

Spatial Organization of Phase-separated DNA Droplets

论文作者

Wilken, Sam, Chaderjian, Aria, Saleh, Omar A.

论文摘要

生物学中液态液相分离的许多最新研究集中在相位分离作为细胞功能的动态控制机制上,但也可以导致复杂的介观结构。我们主要研究了由DNA纳米级的模型系统:有限价值,自组装的颗粒,该颗粒通过二极管相变形成微米级液滴。我们证明,在相分离后,纳米级液滴会自发形成超一样结构,这种液体具有“隐藏阶”的无序物质,将晶体的远距离顺序与液体的短距离各向同性相结合。我们发现,DNA液滴的超均匀性反映了近平衡的动力学,相位分离驱动了液滴的组织,然后通过液滴布朗尼运动朝着平衡放松。我们设计了一个不混溶的DNA液滴的两个物种系统,并在同一样品中找到了两个明显的超一样结构,但是具有随机的跨物种液滴相关性,它们排除了依赖液滴 - 滴滴流体动力相互作用的解释。此外,我们对肽和核苷酸的静电共凝聚进行了实验,这些实验表现出与DNA纳米级别无法区分的超明均匀结构,这表明该现象通常适用于经历布朗运动的相分开系统。我们在接近平衡的液滴组装和结构方面的工作为研究驱动/生物环境中的液滴组织机制奠定了基础。这种方法还提供了一条清晰的路径,可以将相位分离的液滴模式作为外来的光学或机械超材料或有效的生化反应器。

Many recent studies of liquid-liquid phase separation in biology focus on phase separation as a dynamic control mechanism for cellular function, but it can also result in complex mesoscopic structures. We primarily investigate a model system consisting of DNA nanostars: finite-valence, self-assembled particles that form micron-scale liquid droplets via a binodal phase transition. We demonstrate that, upon phase separation, nanostar droplets spontaneously form hyperuniform structures, a type of disordered material with `hidden order' that combines the long-range order of crystals with the short-range isotropy of liquids. We find that the hyperuniformity of the DNA droplets reflects near-equilibrium dynamics, where phase separation drives the organization of droplets that then relax toward equilibrium via droplet Brownian motion. We engineer a two-species system of immiscible DNA droplets and find two distinctly hyperuniform structures in the same sample, but with random cross-species droplet correlations, which rules out explanations that rely on droplet-droplet hydrodynamic interactions. In addition, we perform experiments on the electrostatic coacervation of peptides and nucleotides which exhibit hyperuniform structures indistinguishable from DNA nanostars, indicating the phenomenon generally applies to phase-separating systems that experience Brownian motion. Our work on near-equilibrium droplet assembly and structure provides a foundation to investigate droplet organizational mechanisms in driven/biological environments. This approach also provides a clear path to implement phase-separated droplet patterns as exotic optical or mechanical metamaterials, or as efficient biochemical reactors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源