论文标题
深度学习产生合成癌组织学以解释性和教育
Deep Learning Generates Synthetic Cancer Histology for Explainability and Education
论文作者
论文摘要
包括深神经网络(DNN)在内的人工智能方法可以通过与人类病理学家相匹配或超过人类病理学家的准确性来对肿瘤进行快速分子分类。辨别神经网络如何做出预测仍然是一个重大挑战,但是解释性工具有助于洞悉相应的组织学特征在定义不当时所学到的模型。在这里,我们提出了一种使用条件生成对抗网络(CGAN)生成的合成组织学来改善DNN模型的解释性的方法。我们表明,CGAN产生高质量的合成组织学图像,可以利用这些图像来解释训练有素的DNN模型,以对分子肿瘤进行分类,从而揭示与分子状态相关的组织学特征。通过类和层混合的微调合成组织学说明了肿瘤亚型之间细微的形态差异。最后,我们证明了合成组织学用于增强训练学家的教育,这表明这些直观的可视化可以增强和改善对肿瘤生物学组织学表现的理解。
Artificial intelligence methods including deep neural networks (DNN) can provide rapid molecular classification of tumors from routine histology with accuracy that matches or exceeds human pathologists. Discerning how neural networks make their predictions remains a significant challenge, but explainability tools help provide insights into what models have learned when corresponding histologic features are poorly defined. Here, we present a method for improving explainability of DNN models using synthetic histology generated by a conditional generative adversarial network (cGAN). We show that cGANs generate high-quality synthetic histology images that can be leveraged for explaining DNN models trained to classify molecularly-subtyped tumors, exposing histologic features associated with molecular state. Fine-tuning synthetic histology through class and layer blending illustrates nuanced morphologic differences between tumor subtypes. Finally, we demonstrate the use of synthetic histology for augmenting pathologist-in-training education, showing that these intuitive visualizations can reinforce and improve understanding of histologic manifestations of tumor biology.