论文标题

面部AU检测端到端的机器学习框架在重症监护单元中

End-to-End Machine Learning Framework for Facial AU Detection in Intensive Care Units

论文作者

Nerella, Subhash, Khezeli, Kia, Davidson, Andrea, Tighe, Patrick, Bihorac, Azra, Rashidi, Parisa

论文摘要

在接受重症监护病房的患者中,疼痛是常见的。 ICU患者的疼痛评估仍然是临床医生和ICU员工的挑战,特别是在非语言,机械通风和插管患者的情况下。当前的基于手动观察的疼痛评估工具受到疼痛观察的频率的限制,并且是观察者主观的。面部行为是基于观察工具的主要组成部分。此外,先前的文献显示了使用面部动作单元(AUS)进行疼痛面部表达检测的可行性。但是,这些方法仅限于受控或半控制环境,并且从未在临床环境中得到验证。在这项研究中,我们介绍了疼痛ICU数据集,这是动态ICU环境中最大的针对面部行为分析的最大数据集。我们的数据集包括76,388例患者面部图像框架,该aus从49名成年患者获得的AUS注释,该患者在佛罗里达大学健康Shands医院的ICUS录入。在这项工作中,我们评估了两个视觉变压器模型,即VIT和SWIN,以在我们的疼痛ICU数据集和外部数据集上进行AU检测。我们开发了一个完全端到端的AU检测管道,目的是在ICU中执行实时AU​​检测。 Swin Transformer碱的变体在疼痛ICU数据集的持有测试分区中达到了0.88 F1得分和0.85的精度。

Pain is a common occurrence among patients admitted to Intensive Care Units. Pain assessment in ICU patients still remains a challenge for clinicians and ICU staff, specifically in cases of non-verbal sedated, mechanically ventilated, and intubated patients. Current manual observation-based pain assessment tools are limited by the frequency of pain observations administered and are subjective to the observer. Facial behavior is a major component in observation-based tools. Furthermore, previous literature shows the feasibility of painful facial expression detection using facial action units (AUs). However, these approaches are limited to controlled or semi-controlled environments and have never been validated in clinical settings. In this study, we present our Pain-ICU dataset, the largest dataset available targeting facial behavior analysis in the dynamic ICU environment. Our dataset comprises 76,388 patient facial image frames annotated with AUs obtained from 49 adult patients admitted to ICUs at the University of Florida Health Shands hospital. In this work, we evaluated two vision transformer models, namely ViT and SWIN, for AU detection on our Pain-ICU dataset and also external datasets. We developed a completely end-to-end AU detection pipeline with the objective of performing real-time AU detection in the ICU. The SWIN transformer Base variant achieved 0.88 F1-score and 0.85 accuracy on the held-out test partition of the Pain-ICU dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源