论文标题

关于量子场理论和量子重力的拓扑变化

On topology changes in quantum field theory and quantum gravity

论文作者

Schulz, Benjamin

论文摘要

如果一个试图让洛伦兹的恢复性在两个拓扑上不同的歧管之间插值,则可以证明两个奇异定理。另一方面,卡地亚(Cartier)和德威特·莫特(Dewitt-Morette)通过路径积分对量子场理论(QFTS)进行了严格的定义。本文使用他们的结果来研究是否可以使QFT与拓扑变化兼容。我们表明,关于指标的路径积分需要有限的规范,对于后者和退化指标,有时可以通过四型解决这个问题。我们证明已经在某些尖锐的奇异点附近,可能会出现一些QFT的困难。另一方面,我们表明可以在简单设置中拓扑变化导致的圆锥形奇点来定义简单的QFT。我们认为,许多量子重力理论的基态将意味着一个小的宇宙常数,并且在宇宙扩张期间,会导致频繁的拓扑变化。不幸的是,由于上述问题,很难始终如一地描述过渡幅度。我们认为,需要通过随机微分方程来描述QFT,在重力的情况下,通过regge cyculus来描述QFT,以解决此问题。

Two singularity theorems can be proven if one attempts to let a Lorentzian cobordism interpolate between two topologically distinct manifolds. On the other hand, Cartier and DeWitt-Morette have given a rigorous definition for quantum field theories (qfts) by means of path integrals. This article uses their results to study whether qfts can be made compatible with topology changes. We show that path integrals over metrics need a finite norm for the latter and for degenerate metrics, this problem can sometimes be resolved with tetrads. We prove that already in the neighborhood of some cuspidal singularities, difficulties can arise to define certain qfts. On the other hand, we show that simple qfts can be defined around conical singularities that result from a topology change in a simple setup. We argue that the ground state of many theories of quantum gravity will imply a small cosmological constant and, during the expansion of the universe, will cause frequent topology changes. Unfortunately, it is difficult to describe the transition amplitudes consistently due to the aforementioned problems. We argue that one needs to describe qfts by stochastic differential equations, and in the case of gravity, by Regge calculus in order to resolve this problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源