论文标题
体积扩展-Schmidt法律:统一坡度
The Volumetric Extended-Schmidt Law: A Unity Slope
论文作者
论文摘要
我们在体积密度($ρ_{\ rm sfr} $ $ $ \ propto $ $(ρ_{ρ_{\ rm GAS}ρ_{\ rm star}^0.5}^{0.5}^{\ rm ves)^{α^^{α^{α^{\ rm ves} $ spational ddepornity for中, Ultra-diffuse星系(UDGS),并与体积的kennicutt-schmidt(ks)定律进行比较($ρ_{\ rm sfr} $ $ $ \ propto $ $ $ $ $ρ_{\ rm GAS}我们首先使用11个螺旋的样品在单个星系中表征了这些恒星形成法,找到中间倾斜$α^{\ rm Ves} $ = 0.98和$α^{\ rm vks} $ = 1.42,带有星系至式rms的rms rms,对于沃尔仪而言,这是较小的,对于沃尔姆特法律而言,这是0.18 vs(0.18 vs)。通过将螺旋中的所有区域与另外13个矮人和一个UDG中的所有区域结合到一个数据集中,发现给定X轴的体积ES定律的RMS散布为0.25 DEX,也小于体积KS Law(0.34 DEX)的RMS。在UDG提供的极低气体密度制度下,体积KS法律分解了,但规模的ES法律仍然存在。另一方面,与表面密度ES定律相比,体积ES定律的RMS散布稍大,这与ES定律具有$α^{\ rm ves} \ equiv $ 1的固有斜率相一致,但规模高度的额外观察性误差会增加体积密度的不确定度。 ES法律的统一斜率意味着星形形成效率(= $ρ_{\ rm sfr} $/$/$ρ_{\ rm GAS} $)受到与$ρ_{\ rm star}^0.5} $相关的数量的调节。
We investigate the extended-Schmidt (ES) law in volume densities ($ρ_{\rm SFR}$ $\propto$ $(ρ_{\rm gas}ρ_{\rm star}^{0.5})^{α^{\rm VES}}$) for spatially-resolved regions in spiral, dwarf, and ultra-diffuse galaxies (UDGs), and compare to the volumetric Kennicutt-Schmidt (KS) law ($ρ_{\rm SFR}$ $\propto$ $ρ_{\rm gas}^{α^{\rm VKS}}$). We first characterize these star formation laws in individual galaxies using a sample of 11 spirals, finding median slopes $α^{\rm VES}$=0.98 and $α^{\rm VKS}$=1.42, with a galaxy-to-galaxy rms fluctuation that is substantially smaller for the volumetric ES law (0.18 vs 0.41). By combining all regions in spirals with those in additional 13 dwarfs and one UDG into one single dataset, it is found that the rms scatter of the volumetric ES law at given x-axis is 0.25 dex, also smaller than that of the volumetric KS law (0.34 dex). At the extremely low gas density regime as offered by the UDG, the volumetric KS law breaks down but the volumetric ES law still holds. On the other hand, as compared to the surface density ES law, the volumetric ES law instead has a slightly larger rms scatter, consistent with the scenario that the ES law has an intrinsic slope of $α^{\rm VES} \equiv$1 but the additional observational error of the scale height increases the uncertainty of the volume density. The unity slope of the ES law implies that the star formation efficiency (=$ρ_{\rm SFR}$/$ρ_{\rm gas}$) is regulated by the quantity that is related to the $ρ_{\rm star}^{0.5}$.