论文标题

MLIC:学习图像压缩的多参考熵模型

MLIC: Multi-Reference Entropy Model for Learned Image Compression

论文作者

Jiang, Wei, Yang, Jiayu, Zhai, Yongqi, Ning, Peirong, Gao, Feng, Wang, Ronggang

论文摘要

最近,学到的图像压缩取得了出色的性能。估计潜在表示的分布的熵模型在提高利率延伸性能中起着至关重要的作用。但是,大多数熵模型仅在一个维度上捕获相关性,而潜在表示则包含渠道,局部空间和全局空间相关性。为了解决此问题,我们提出了多参考熵模型(MEM)和高级版本Mem $^+$。这些模型捕获了潜在表示中存在的不同类型的相关性。具体而言,我们首先将潜在表示形式分为切片。解码当前切片时,我们使用先前解码的切片作为上下文,并使用先前解码的切片的注意图来预测当前切片中的全局相关性。为了捕获本地上下文,我们介绍了两个增强的棋盘上下文捕获技术,以避免性能退化。基于MEM和MEM $^+$,我们建议图像压缩模型MIC和MIC $^+$。广泛的实验评估表明,我们的MIC和MIC $^+$型号实现了最先进的性能,而Kodak数据集中的BD率$ 8.05 \%$ $和$ 11.39 \%$与VTM-17.0相比,在PSNR中测量了VTM-17.0。我们的代码可在https://github.com/jiangweibeta/mlic上找到。

Recently, learned image compression has achieved remarkable performance. The entropy model, which estimates the distribution of the latent representation, plays a crucial role in boosting rate-distortion performance. However, most entropy models only capture correlations in one dimension, while the latent representation contain channel-wise, local spatial, and global spatial correlations. To tackle this issue, we propose the Multi-Reference Entropy Model (MEM) and the advanced version, MEM$^+$. These models capture the different types of correlations present in latent representation. Specifically, We first divide the latent representation into slices. When decoding the current slice, we use previously decoded slices as context and employ the attention map of the previously decoded slice to predict global correlations in the current slice. To capture local contexts, we introduce two enhanced checkerboard context capturing techniques that avoids performance degradation. Based on MEM and MEM$^+$, we propose image compression models MLIC and MLIC$^+$. Extensive experimental evaluations demonstrate that our MLIC and MLIC$^+$ models achieve state-of-the-art performance, reducing BD-rate by $8.05\%$ and $11.39\%$ on the Kodak dataset compared to VTM-17.0 when measured in PSNR. Our code is available at https://github.com/JiangWeibeta/MLIC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源