论文标题
部分可观测时空混沌系统的无模型预测
The weak coupling theory of all dimensional loop quantum gravity
论文作者
论文摘要
与Abelian仪表组的弱耦合环量子理论为我们提供了研究LQG弱耦合特性的新观点。在本文中,所有维环量子重力的弱耦合理论都是基于$ SO(D+1)$ holomy-flux相位与$ u(1)^{\ frac {d(d+1)} {2} {2} {2}} $自变量 - $ folonomy-flux相位空间建立的。更明确地,在$(d+1)中,高斯,简单,差异性和标量约束操作员将推广到$ u(1)^{\ frac {\ frac {d(d+1)} {2}} {2}}} $ loop量子理论,该理论基于Sympleclectic-Morphism和syplectic-Morphism和syplectic-morphism和$ u(1)^{\ frac {d(d+1)} {2}} $ loop量子理论配备了这些约束操作员,可以使弱耦合$ u(1)^{\ frac {\ frac {d(d+1)} {2}}} {2}} {2}}} { $ u(1)^{\ frac {d(d+1)} {2}} $ heat-kernel cooherent状态在$ u(1)^{\ frac {d+1)} {2}} {2}} $ holonomy-flux-flux-flux flux相位空间上达到峰值的峰值。
The weak coupling loop quantum theory with Abelian gauge group provides us a new perspective to study the weak coupling properties of LQG. In this paper, the weak coupling theory of all dimensional loop quantum gravity is established based on a symplectic-morphism between the $SO(D+1)$ holonomy-flux phase space and the $U(1)^{\frac{D(D+1)}{2}}$ holonomy-flux phase space. More explicitly, the Gaussian, simplicity, diffeomorphism and scalar constraint operators in $SO(D+1)$ loop quantum gravity will be generalized to the $U(1)^{\frac{D(D+1)}{2}}$ loop quantum theory based on the symplectic-morphism, and the $U(1)^{\frac{D(D+1)}{2}}$ loop quantum theory equipped with these constraint operators gives the weak coupling $U(1)^{\frac{D(D+1)}{2}}$ loop quantum gravity, with the corresponding Hilbert space is composed by the $U(1)^{\frac{D(D+1)}{2}}$ heat-kernel coherent states which are peaked at the weak coupling region of the $U(1)^{\frac{D(D+1)}{2}}$ holonomy-flux phase space.