论文标题
以自我为中心的视觉
Legged Locomotion in Challenging Terrains using Egocentric Vision
论文作者
论文摘要
动物能够使用视觉精确而敏捷的运动。复制这种能力一直是机器人技术的长期目标。传统方法是将这个问题分解为高程映射和立足计划阶段。但是,高程映射易受故障和大噪声伪像,需要专门的硬件,并且在生物学上是难以置信的。在本文中,我们提出了第一个能够穿越楼梯,路缘,垫脚石和间隙的端到端运动系统。我们使用单个前置深度相机在中型四倍的机器人上显示了此结果。机器人的尺寸很小,需要发现其他地方看不到的专业步态模式。以自我为中心的相机要求该政策记住过去的信息,以估计其后脚下方的地形。我们在模拟中训练政策。培训有两个阶段 - 首先,我们使用廉价到廉价的深度图像变体进行培训,然后在第2阶段将其提炼成最终的政策,该政策使用深度使用监督学习。由此产生的政策转移到了现实世界中,并能够在机器人的有限计算上实时运行。它可以穿越各种各样的地形,同时对推动,湿滑的表面和岩石地形等扰动。视频在https://vision-locomotion.github.io上
Animals are capable of precise and agile locomotion using vision. Replicating this ability has been a long-standing goal in robotics. The traditional approach has been to decompose this problem into elevation mapping and foothold planning phases. The elevation mapping, however, is susceptible to failure and large noise artifacts, requires specialized hardware, and is biologically implausible. In this paper, we present the first end-to-end locomotion system capable of traversing stairs, curbs, stepping stones, and gaps. We show this result on a medium-sized quadruped robot using a single front-facing depth camera. The small size of the robot necessitates discovering specialized gait patterns not seen elsewhere. The egocentric camera requires the policy to remember past information to estimate the terrain under its hind feet. We train our policy in simulation. Training has two phases - first, we train a policy using reinforcement learning with a cheap-to-compute variant of depth image and then in phase 2 distill it into the final policy that uses depth using supervised learning. The resulting policy transfers to the real world and is able to run in real-time on the limited compute of the robot. It can traverse a large variety of terrain while being robust to perturbations like pushes, slippery surfaces, and rocky terrain. Videos are at https://vision-locomotion.github.io