论文标题

通过图神经网络,孟加拉新闻标题和身体内容之间的不一致检测

Incongruity Detection between Bangla News Headline and Body Content through Graph Neural Network

论文作者

Palash, Md Aminul Haque, Khan, Akib, Islam, Kawsarul, Nasim, MD Abdullah Al, Shahjahan, Ryan Mohammad Bin

论文摘要

新闻头条与身体内容之间的不一致是一种欺骗的常见方法,用于吸引读者。盈利的头条新闻读者的兴趣,并鼓励他们访问特定的网站。这通常是通过添加不诚实元素的诱因来完成的。结果,使用语言分析在标题和身体内容之间自动发现不一致的新闻引起了研究界的关注。但是,主要是为英语开发各种解决方案来解决这个问题,而将低资源的语言排除在图片中。孟加拉国排名最广泛的语言中排名第七,这激发了我们特别注意孟加拉语。此外,孟加拉国具有更复杂的句法结构和更少的自然语言处理资源,因此执行NLP任务(例如不一致检测和立场检测)变得具有挑战性。为了解决这个问题,对于孟加拉语言,我们提供了一个基于图形的层次双重编码器(BGHDE)模型,该模型可以有效地学习孟加拉新闻头条和内容段落之间的内容相似性和矛盾。实验结果表明,拟议的基于孟加拉的神经网络模型在各种孟加拉新闻数据集上的精度超过90%。

Incongruity between news headlines and the body content is a common method of deception used to attract readers. Profitable headlines pique readers' interest and encourage them to visit a specific website. This is usually done by adding an element of dishonesty, using enticements that do not precisely reflect the content being delivered. As a result, automatic detection of incongruent news between headline and body content using language analysis has gained the research community's attention. However, various solutions are primarily being developed for English to address this problem, leaving low-resource languages out of the picture. Bangla is ranked 7th among the top 100 most widely spoken languages, which motivates us to pay special attention to the Bangla language. Furthermore, Bangla has a more complex syntactic structure and fewer natural language processing resources, so it becomes challenging to perform NLP tasks like incongruity detection and stance detection. To tackle this problem, for the Bangla language, we offer a graph-based hierarchical dual encoder (BGHDE) model that learns the content similarity and contradiction between Bangla news headlines and content paragraphs effectively. The experimental results show that the proposed Bangla graph-based neural network model achieves above 90% accuracy on various Bangla news datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源