论文标题
几乎可逆操作员
Almost invertible operators
论文作者
论文摘要
我们证明,有界的线性运算符$ t $是可逆操作员的直接总和,也是具有最多可计数频谱的操作员的直接总和。 $ \ mbox {acc}^{ω__{1}}} \,σ(t)$是$ω_{1} $ - $σ(t)的th cantor-bendixson衍生物。$
We prove that a bounded linear operator $T$ is a direct sum of an invertible operator and an operator with at most countable spectrum iff $0\notin\mbox{acc}^{ω_{1}}\,σ(T),$ where $ω_{1}$ is the smallest uncountable ordinal and $\mbox{acc}^{ω_{1}}\,σ(T)$ is the $ω_{1}$-th Cantor-Bendixson derivative of $σ(T).$