论文标题
Agileavatar:通过级联域桥接建立风格的3D头像
AgileAvatar: Stylized 3D Avatar Creation via Cascaded Domain Bridging
论文作者
论文摘要
在我们的现代生活中,风格化的3D化身变得越来越突出。手动创建这些化身通常涉及艰苦的选择和调整连续和离散参数,并且对于普通用户来说是耗时的。自我监督的方法自动从用户自拍照中创建3D头像有望高质量,而注释成本很少,但由于较大的样式域间隙,在对风格化的头像中的应用不足。我们提出了一个新颖的自我监督学习框架,以创建具有连续和离散参数混合的高质量风格化的3D化身。我们的级联域桥接框架首先利用一种修改的肖像性风格化方法将输入自拍照转化为风格化的头像渲染,作为所需3D化身的目标。接下来,我们找到化身的最佳参数可以通过我们训练以模仿阿凡达图形引擎的可区分模仿者来匹配风格化的头像效果图。为了确保我们可以有效地优化离散参数,我们采用了级联的放松和搜索管道。我们使用人类偏好研究来评估与以前的工作以及手动创建相比,我们的方法保持了用户身份的能力。我们的结果比以前的工作得分要高得多,并且与手动创作的偏好得分更高。我们还提供一项消融研究,以证明我们的管道中的设计选择是合理的。
Stylized 3D avatars have become increasingly prominent in our modern life. Creating these avatars manually usually involves laborious selection and adjustment of continuous and discrete parameters and is time-consuming for average users. Self-supervised approaches to automatically create 3D avatars from user selfies promise high quality with little annotation cost but fall short in application to stylized avatars due to a large style domain gap. We propose a novel self-supervised learning framework to create high-quality stylized 3D avatars with a mix of continuous and discrete parameters. Our cascaded domain bridging framework first leverages a modified portrait stylization approach to translate input selfies into stylized avatar renderings as the targets for desired 3D avatars. Next, we find the best parameters of the avatars to match the stylized avatar renderings through a differentiable imitator we train to mimic the avatar graphics engine. To ensure we can effectively optimize the discrete parameters, we adopt a cascaded relaxation-and-search pipeline. We use a human preference study to evaluate how well our method preserves user identity compared to previous work as well as manual creation. Our results achieve much higher preference scores than previous work and close to those of manual creation. We also provide an ablation study to justify the design choices in our pipeline.