论文标题
通过时间间隔分解的信号时间逻辑规格的模型预测控制
Model Predictive Control for Signal Temporal Logic Specifications with Time Interval Decomposition
论文作者
论文摘要
在本文中,我们研究了由信号时间逻辑(STL)公式描述的高级规格的模型预测控制(MPC)的问题。最近的作品表明,MPC具有在反应性环境中处理逻辑任务的巨大潜力。但是,现有方法遭受重大计算负担,尤其是对于具有较大视野的任务而言。在这项工作中,我们根据时间间隔分解为STL任务提出了一个更有效的MPC框架。具体而言,我们仍然将标准收缩式Horizon MPC框架与混合整数线性编程(MILP)技术用于开环优化问题。但是,我们将STL公式分解为具有不相交时间范围的几个子形式,而不是直接将MPC应用于整个任务范围,并且对每个短摩因此子迭代均使用缩小的Horizon MPC。为了确保整个STL公式的满意度并确保迭代过程的递归可行性,我们引入了新的终端约束以连接每个子形式。我们展示了这些终端约束如何通过有效的内包式方法来计算。案例研究说明了我们方法的计算效率。
In this paper, we investigate the problem of Model Predictive Control (MPC) of dynamic systems for high-level specifications described by Signal Temporal Logic (STL) formulae. Recent works show that MPC has the great potential in handling logical tasks in reactive environments. However, existing approaches suffer from the heavy computational burden, especially for tasks with large horizons. In this work, we propose a computationally more efficient MPC framework for STL tasks based on time interval decomposition. Specifically, we still use the standard shrink horizon MPC framework with Mixed Integer Linear Programming (MILP) techniques for open-loop optimization problems. However, instead of applying MPC directly for the entire task horizon, we decompose the STL formula into several sub-formulae with disjoint time horizons, and shrinking horizon MPC is applied for each short-horizon sub-formula iteratively. To guarantee the satisfaction of the entire STL formula and to ensure the recursive feasibility of the iterative process, we introduce new terminal constraints to connect each sub-formula. We show how these terminal constraints can be computed by an effective inner-approximation approach. The computational efficiency of our approach is illustrated by a case study.