论文标题

Dyfranet:使用2到3D深神经网络在时空中的预测和背景动态断裂力学

DyFraNet: Forecasting and Backcasting Dynamic Fracture Mechanics in Space and Time Using a 2D-to-3D Deep Neural Network

论文作者

Hsu, Yu-Chuan, Buehler, Markus J.

论文摘要

材料故障的动态是从医疗保健到结构材料再到运输的一系列科学和工程领域中最关键的现象之一。在本文中,我们提出了一个专门设计的深神经网络Dyfranet,可以通过识别裂缝传播的完整历史来预测动态断裂行为 - 从裂纹开始,随着裂纹通过材料的发展,建模为一系列随着时间的推移而发展并彼此依赖。此外,该模型不仅可以预测未来的断裂过程,而且可以进行反向播放以阐明过去的断裂史。在这种情况下,一旦提供了骨折事件的结果,该模型将阐明导致该状态的过去事件,并将预测故障过程的未来演变。通过将预测的结果与原子级的模拟和理论进行比较,我们表明Dyfranet可以通过准确预测裂纹如何随着时间的流逝而捕获动态断裂力学,包括裂纹速度等度量以及裂纹何时变得不稳定。我们使用Gradcam来解释Dyfranet如何感知几何条件与断裂动力学之间的关系,并且我们发现Dyfranet特别注意裂纹尖端周围的区域,这些区域在裂缝繁殖的早期阶段具有关键的影响。在后来的阶段,该模型对材料中现有或新形成的损伤分布的关注越来越多。拟议的方法具有巨大的潜力,可以加快针对断裂故障的材料设计中的动力学探索,并可以在各种动态工程问题上进行有益地适应。

The dynamics of materials failure is one of the most critical phenomena in a range of scientific and engineering fields, from healthcare to structural materials to transportation. In this paper we propose a specially designed deep neural network, DyFraNet, which can predict dynamic fracture behaviors by identifying a complete history of fracture propagation - from cracking onset, as a crack grows through the material, modeled as a series of frames evolving over time and dependent on each other. Furthermore, this model can not only forecast future fracture processes but also backcast to elucidate the past fracture history. In this scenario, once provided with the outcome of a fracture event, the model will elucidate past events that led to this state and will predict the future evolution of the failure process. By comparing the predicted results with atomistic-level simulations and theory, we show that DyFraNet can capture dynamic fracture mechanics by accurately predicting how cracks develop over time, including measures such as the crack speed, as well as when cracks become unstable. We use GradCAM to interpret how DyFraNet perceives the relationship between geometric conditions and fracture dynamics and we find DyFraNet pays special attention to the areas around crack tips, which have a critical influence in the early stage of fracture propagation. In later stages, the model pays increased attention to the existing or newly formed damage distribution in the material. The proposed approach offers significant potential to accelerate the exploration of the dynamics in material design against fracture failures and can be beneficially adapted for all kinds of dynamical engineering problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源