论文标题

用于优化健康供应链的决策学习学习

Decision-Aware Learning for Optimizing Health Supply Chains

论文作者

Chung, Tsai-Hsuan, Rostami, Vahid, Bastani, Hamsa, Bastani, Osbert

论文摘要

我们研究了在发展中国家,特别是塞拉利昂(Sierra Leone)分配有限的医疗资源供应的问题。我们通过将机器学习(预测需求)与优化(以优化分配)结合(预测需求)来解决这个问题。一个关键的挑战是需要将用于训练机器学习模型的损失函数与与下游优化问题相关的决策损失。传统解决方案在模型架构中的灵活性有限,并且对大型数据集的扩展很差。我们提出了一种决策的学习算法,该算法使用最佳决策损失的新型泰勒扩展来导致机器学习损失。重要的是,我们的方法仅需要简单地重新加权培训数据,以确保它既灵活又可扩展,例如,我们将其纳入使用多任务学习框架训练的随机森林中。我们将框架应用于与塞拉利昂的决策者合作优化必需药物的分布;目前,高度不确定的需求和预算有限会导致未满足的需求过多。样本外结果表明,我们的端到端方法可以大大减少整个塞拉利昂的1040个医疗机构的未满足需求。

We study the problem of allocating limited supply of medical resources in developing countries, in particular, Sierra Leone. We address this problem by combining machine learning (to predict demand) with optimization (to optimize allocations). A key challenge is the need to align the loss function used to train the machine learning model with the decision loss associated with the downstream optimization problem. Traditional solutions have limited flexibility in the model architecture and scale poorly to large datasets. We propose a decision-aware learning algorithm that uses a novel Taylor expansion of the optimal decision loss to derive the machine learning loss. Importantly, our approach only requires a simple re-weighting of the training data, ensuring it is both flexible and scalable, e.g., we incorporate it into a random forest trained using a multitask learning framework. We apply our framework to optimize the distribution of essential medicines in collaboration with policymakers in Sierra Leone; highly uncertain demand and limited budgets currently result in excessive unmet demand. Out-of-sample results demonstrate that our end-to-end approach can significantly reduce unmet demand across 1040 health facilities throughout Sierra Leone.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源