论文标题

N2V2-使用修改的采样策略和调整的网络体系结构修复noings2void棋盘板伪像

N2V2 -- Fixing Noise2Void Checkerboard Artifacts with Modified Sampling Strategies and a Tweaked Network Architecture

论文作者

Höck, Eva, Buchholz, Tim-Oliver, Brachmann, Anselm, Jug, Florian, Freytag, Alexander

论文摘要

近年来,基于神经网络的图像降解方法已彻底改变了生物医学显微镜数据的分析。即使没有专用的培训数据,也适用于几乎所有嘈杂的数据集,例如noings2void(N2V),例如noige2Void(N2V),例如noige2Void(N2V)。可以说,这有助于在整个生命科学中快速而广泛地采用N2V。不幸的是,N2V的基础盲点训练可能会导致相当可见的棋盘板伪像,从而大大降低了最终预测的质量。在这项工作中,我们为Vanilla N2V设置提供了两种修改,这两者都有助于大大减少不必要的伪像。首先,我们提出了一个修改后的网络体系结构,即使用Blurpool代替整个使用的U-NET,将残留的U-NET滚动到非残基U-NET,并消除Uppermott U-NET级别的跳过连接。此外,我们提出了新的替换策略,以确定填充当选的盲点像素的像素强度值。我们验证了一系列显微镜和自然图像数据的修改。基于来自多种噪声类型的添加合成噪声,并在不同的幅度下,我们表明,两者都提出的修改推动了当前的最新图像,以进行完全自我监督的图像。

In recent years, neural network based image denoising approaches have revolutionized the analysis of biomedical microscopy data. Self-supervised methods, such as Noise2Void (N2V), are applicable to virtually all noisy datasets, even without dedicated training data being available. Arguably, this facilitated the fast and widespread adoption of N2V throughout the life sciences. Unfortunately, the blind-spot training underlying N2V can lead to rather visible checkerboard artifacts, thereby reducing the quality of final predictions considerably. In this work, we present two modifications to the vanilla N2V setup that both help to reduce the unwanted artifacts considerably. Firstly, we propose a modified network architecture, i.e., using BlurPool instead of MaxPool layers throughout the used U-Net, rolling back the residual U-Net to a non-residual U-Net, and eliminating the skip connections at the uppermost U-Net level. Additionally, we propose new replacement strategies to determine the pixel intensity values that fill in the elected blind-spot pixels. We validate our modifications on a range of microscopy and natural image data. Based on added synthetic noise from multiple noise types and at varying amplitudes, we show that both proposed modifications push the current state-of-the-art for fully self-supervised image denoising.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源