论文标题
带有规定的零和子序列的序列的结构:排名两个$ p $ -groups
Structure of a sequence with prescribed zero-sum subsequences: Rank Two $p$-groups
论文作者
论文摘要
令$ g =(\ mathbb z/n \ mathbb z)\ oplus(\ mathbb z/n \ mathbb z)$。令$ \ mathsf {s} _ {\ leq k}(g)$为最小的整数$ \ ell $,使得$ g $的$ \ ell $项的每个序列都具有重复,允许使用,具有最多$ k $的非零零sum sequinence。众所周知,$ \ Mathsf {s} _ {\ leq 2n-1-k}(g)= 2n-1+k $ for $ k \ for $ k \ in [0,n-1] $,其极端序列的结构显示了此绑定的紧密结构,当$ k \ in \ in \ in \ in \ in \ in \ {0,1,n-1,n-1 \} $,以及各种特殊情况时,以及各种特殊情况时,以及当$ k \ n时$ k \] [2] $ [2,2。2,2。对于剩余的值$ k \在[2,n-2] $中,长度为$ 2n-2+k $的极端序列的表征避免了最多$ 2N-1-k $的非空的零长度,它一般仍保持打开状态,并指出他们必须所有人都必须具有$ e_1^{[n-1]} \ boldsymbol $ e_1^{[n-1]} \ boldsymbol {e_____] \ boldsymbol {\ cdot}(e_1 +e_2)^{[k]} $在某些基础上$(e_1,e_2)$ for $ g $。这里$ x^{[n]} $表示由$ x $重复$ n $ times的术语组成的序列。在本文中,当$ n $是PRIME时,我们为所有$ k \ in [2,n-2] $中的所有$ k \建立了这个猜想,鉴于其他最近的工作,这意味着所有等级两个Abelian群体的猜想结构。
Let $G=(\mathbb Z/n\mathbb Z) \oplus (\mathbb Z/n\mathbb Z)$. Let $\mathsf {s}_{\leq k}(G)$ be the smallest integer $\ell$ such that every sequence of $\ell$ terms from $G$, with repetition allowed, has a nonempty zero-sum subsequence with length at most $k$. It is known that $\mathsf {s}_{\leq 2n-1-k}(G)=2n-1+k$ for $k\in [0,n-1]$, with the structure of extremal sequences showing this bound tight determined when $k\in \{0,1,n-1\}$, and for various special cases when $k\in [2,n-2]$. For the remaining values $k\in [2,n-2]$, the characterization of extremal sequences of length $2n-2+k$ avoiding a nonempty zero-sum of length at most $2n-1-k$ remained open in general, with it conjectured that they must all have the form $e_1^{[n-1]} \boldsymbol{\cdot} e_2^{[n-1]} \boldsymbol{\cdot} (e_1 +e_2)^{[k]}$ for some basis $(e_1,e_2)$ for $G$. Here $x^{[n]}$ denotes a sequence consisting of the term $x$ repeated $n$ times. In this paper, we establish this conjecture for all $k\in [2,n-2]$ when $n$ is prime, which in view of other recent work, implies the conjectured structure for all rank two abelian groups.