论文标题
揉捏理论,用于在真实线上单调函数的迭代
Kneading Theory for Iteration of Monotonous Functions on the Real Line
论文作者
论文摘要
我们为在真实行中的单调功能的家庭构建了一个揉捏理论的版本。设置的一般性涵盖了Milnor-Thurston的揉捏理论的两个经典结果:第一个是通过其揉捏序列动态表征$ L $ - 模样的图表,第二个是定义揉捏确定性的概念,将其与拓扑结合起来,并将其与拓扑相关联,并使用此构建某种特殊类型的特殊类型的特殊类型的“线性”线性“线性”。
We construct a version of kneading theory for families of monotonous functions on the real line. The generality of the setup covers two classical results from Milnor-Thurston's kneading theory: the first one is to dynamically characterise an $l$-modal map by its kneading sequence, the second one is to define the concept of kneading determinant, relate it to topological entropy and use this to construct a certain type of special "linearazing measure".