论文标题

Twitter的家庭时间表中种族偏见的县级算法审计

County-level Algorithmic Audit of Racial Bias in Twitter's Home Timeline

论文作者

Belli, Luca, Yee, Kyra, Tantipongpipat, Uthaipon, Gonzales, Aaron, Lum, Kristian, Hardt, Moritz

论文摘要

我们报告了对Twitter家庭时间表排名系统审核的结果。审计的目的是确定某些种族群体的作者是否在系统上对他们的推文的印象计数是否比其他人更高。任何此类审核的核心障碍是Twitter通常不会将种族信息与用户收集或关联,从而禁止在个人作者级别进行分析。围绕这一障碍,我们将我们带入我们的分析单位。我们根据可用位置数据将美国在Twitter平台上的每个用户与县关联。美国人口普查局提供了有关每个县人口种族分解的信息。然后,我们调查的问题是,县的种族分解是否与来自县内的推文的可见性有关。为了关注美国人口普查局定义的两个种族群体,即黑人或非裔美国人人口以及白人人口,我们评估了两种偏见的统计量度。我们的调查是对Twitter平台上种族偏见的首次大规模算法审计。此外,它说明了衡量在线平台中种族偏见的挑战,而无需提供有关用户的此类信息。

We report on the outcome of an audit of Twitter's Home Timeline ranking system. The goal of the audit was to determine if authors from some racial groups experience systematically higher impression counts for their Tweets than others. A central obstacle for any such audit is that Twitter does not ordinarily collect or associate racial information with its users, thus prohibiting an analysis at the level of individual authors. Working around this obstacle, we take US counties as our unit of analysis. We associate each user in the United States on the Twitter platform to a county based on available location data. The US Census Bureau provides information about the racial decomposition of the population in each county. The question we investigate then is if the racial decomposition of a county is associated with the visibility of Tweets originating from within the county. Focusing on two racial groups, the Black or African American population and the White population as defined by the US Census Bureau, we evaluate two statistical measures of bias. Our investigation represents the first large-scale algorithmic audit into racial bias on the Twitter platform. Additionally, it illustrates the challenges of measuring racial bias in online platforms without having such information on the users.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源