论文标题

通过卫星图像减轻对比表示学习中的城乡差异

Mitigating Urban-Rural Disparities in Contrastive Representation Learning with Satellite Imagery

论文作者

Zhang, Miao, Chunara, Rumi

论文摘要

在气候,经济学和公共卫生中,卫星图像已被借助许多社会至关重要的任务。然而,由于景观的异质性(例如,道路在不同地方的外观),模型可以在整个地理区域表现出不同的性能。鉴于在社会背景下使用的算法系统中差异的重要潜力,在这里,我们考虑了城乡识别土地覆盖特征的风险。这是通过语义细分(根据所显示的内容标记图像区域的常见计算机视觉任务),该任务使用通过对比度自我监督学习生成的预训练的图像表示。我们提出了与对比度学习(FAIRDCL)的公平密集表示,是降级多级卷积神经网络模型的多级潜在空间的方法。该方法通过删除在城市和农村地区不同分布的虚假模型表示来改善特征识别,并通过对比的预训练以无监督的方式实现。所获得的图像表示减轻了下游的城市农村预测差异,并且在现实世界卫星图像上胜过最先进的基线。嵌入太空评估和消融研究进一步证明了FairDCL的鲁棒性。由于地理图像中的普遍性和鲁棒性是一个新生的话题,我们的工作激励研究人员考虑在此类应用中的平均准确性之外的指标。

Satellite imagery is being leveraged for many societally critical tasks across climate, economics, and public health. Yet, because of heterogeneity in landscapes (e.g. how a road looks in different places), models can show disparate performance across geographic areas. Given the important potential of disparities in algorithmic systems used in societal contexts, here we consider the risk of urban-rural disparities in identification of land-cover features. This is via semantic segmentation (a common computer vision task in which image regions are labelled according to what is being shown) which uses pre-trained image representations generated via contrastive self-supervised learning. We propose fair dense representation with contrastive learning (FairDCL) as a method for de-biasing the multi-level latent space of convolution neural network models. The method improves feature identification by removing spurious model representations which are disparately distributed across urban and rural areas, and is achieved in an unsupervised way by contrastive pre-training. The obtained image representation mitigates downstream urban-rural prediction disparities and outperforms state-of-the-art baselines on real-world satellite images. Embedding space evaluation and ablation studies further demonstrate FairDCL's robustness. As generalizability and robustness in geographic imagery is a nascent topic, our work motivates researchers to consider metrics beyond average accuracy in such applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源