论文标题

$ B $,量子光谱曲线和旋转Hurwitz数字的Kac-Schwarz运营商

Kac-Schwarz Operators of Type $B$, Quantum Spectral Curves, and Spin Hurwitz Numbers

论文作者

Ji, Ce, Wang, Zhiyuan, Yang, Chenglang

论文摘要

给定满足$τ(0)= 1 $的bkp层次结构的tau功能$τ(t)$,我们讨论了其在同位素Sato Grassmannian及其BKP-WAVE功能上其BKP-affine坐标之间的关系。使用此结果,我们在BKP-afferine坐标方面为$τ(t)$制定了一种类型的kac-schwarz运算符。例如,我们计算带有完整周期的旋转单hurwitz数字的BKP tau功能的仿射坐标,并找到一对kac-schwarz运算符$(P,Q)$满足$ [P,Q] = 1 $。通过执行此操作,我们获得了自旋单hurwitz数字的量子光谱曲线。

Given a tau-function $τ(t)$ of the BKP hierarchy satisfying $τ(0)=1$, we discuss the relation between its BKP-affine coordinates on the isotropic Sato Grassmannian and its BKP-wave function. Using this result, we formulate a type of Kac-Schwarz operators for $τ(t)$ in terms of BKP-affine coordinates. As an example, we compute the affine coordinates of the BKP tau-function for spin single Hurwitz numbers with completed cycles, and find a pair of Kac-Schwarz operators $(P,Q)$ satisfying $[P,Q]=1$. By doing this, we obtain the quantum spectral curve for spin single Hurwitz numbers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源