论文标题

前列腺3D MR图像分段的半监督和自我监管的协作学习

Semi-Supervised and Self-Supervised Collaborative Learning for Prostate 3D MR Image Segmentation

论文作者

Osman, Yousuf Babiker M., Li, Cheng, Huang, Weijian, Elsayed, Nazik, Xue, Zhenzhen, Zheng, Hairong, Wang, Shanshan

论文摘要

体积磁共振(MR)图像分割在许多临床应用中起重要作用。深度学习(DL)最近在各种图像分割任务上实现了最先进甚至人类水平的表现。然而,手动注释DL模型培训的体积MR图像是劳动措施且耗时的。在这项工作中,我们旨在培训针对前列腺3D MR图像分割的半监督和自我监督的协作学习框架,同时使用极为稀疏的注释,为此,仅为每个体积MR Image的中心切片提供了地面真相注释。具体而言,半监督学习和自我监督的学习方法用于生成两组独立的伪标签。然后,通过布尔操作融合这些伪标签,以提取更自信的伪标签集。然后使用手动或网络自我生成标签的图像用于训练分段模型以进行目标量提取。公开可用的前列腺MR图像数据集的实验结果表明,尽管需要较少的注释努力,但我们的框架会产生非常令人鼓舞的分割结果。当难以获取具有密集注释的训练数据时,提出的框架在临床应用中非常有用。

Volumetric magnetic resonance (MR) image segmentation plays an important role in many clinical applications. Deep learning (DL) has recently achieved state-of-the-art or even human-level performance on various image segmentation tasks. Nevertheless, manually annotating volumetric MR images for DL model training is labor-exhaustive and time-consuming. In this work, we aim to train a semi-supervised and self-supervised collaborative learning framework for prostate 3D MR image segmentation while using extremely sparse annotations, for which the ground truth annotations are provided for just the central slice of each volumetric MR image. Specifically, semi-supervised learning and self-supervised learning methods are used to generate two independent sets of pseudo labels. These pseudo labels are then fused by Boolean operation to extract a more confident pseudo label set. The images with either manual or network self-generated labels are then employed to train a segmentation model for target volume extraction. Experimental results on a publicly available prostate MR image dataset demonstrate that, while requiring significantly less annotation effort, our framework generates very encouraging segmentation results. The proposed framework is very useful in clinical applications when training data with dense annotations are difficult to obtain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源