论文标题
基于光子自旋 - 轨道相互作用的单晶有机微腔发光二极管的循环极化电致发光
Circularly polarized electroluminescence from a single-crystal organic microcavity light-emitting diode based on photonic spin-orbit interactions
论文作者
论文摘要
来自有机发光二极管(OLEDS)的循环极化(CP)电致发光引起了极大的关注,因为它们在将来的显示和光子技术中的潜力。 CP-OLEDS的发展主要依赖于手性发射体,这不仅由于设计和合成困难,而且限制了电致发光的性能。当光子的自由度的极化度(伪传)与其轨道角动量相互作用时,光子自旋轨道相互作用(SOI)出现了,例如Rashba-Dresselhaus(RD)效应。在这里,我们通过在两个银层之间嵌入二维有机有机单晶(2D-OSC),以高度对称因子(凝胶)(凝胶)(凝胶)和高亮度展示了一个无手性的微腔CP-old,在两个银层之间嵌入薄薄的二维有机单晶(2D-OSC),这些有机晶体(2D-OSC)用作两种金属镜子,形成了微型腔和同上的两个金属镜,以及两种基于ol exhile架构中的电型。在存在RD效应的情况下,双重2D-OSC微腔中的SOI会导致CP分散体可控制的自旋分解。由于OSC的发射效率高和高载体迁移率,已证明无手性发射器的CP-Oleds表现出高度为1.1的高凝胶,最大亮度约为60000 cd/m2,这使我们的设备置于表现最好的CP-olds中。该策略为芯片微腔内CP-OLEDS开辟了新的途径。
Circularly polarized (CP) electroluminescence from organic light-emitting diodes (OLEDs) has aroused considerable attention for their potential in future display and photonic technologies. The development of CP-OLEDs relies largely on chiral-emitters, which not only remain rare owing to difficulties in design and synthesis but also limit the performance of electroluminescence. When the polarization (pseudospin) degrees of freedom of a photon interact with its orbital angular momentum, photonic spin-orbit interaction (SOI) emerges such as Rashba-Dresselhaus (RD) effect. Here, we demonstrate a chiral-emitter-free microcavity CP-OLED with a high dissymmetry factor (gEL) and high luminance by embedding a thin two-dimensional organic single crystal (2D-OSC) between two silver layers which serve as two metallic mirrors forming a microcavity and meanwhile also as two electrodes in an OLED architecture. In the presence of the RD effect, the SOIs in the birefringent 2D-OSC microcavity result in a controllable spin-splitting with CP dispersions. Thanks to the high emission efficiency and high carrier mobility of the OSC, chiral-emitter-free CP-OLEDs have been demonstrated exhibiting a high gEL of 1.1 and a maximum luminance of about 60000 cd/m2, which places our device among the best performing CP-OLEDs. This strategy opens a new avenue for practical applications towards on-chip microcavity CP-OLEDs.