论文标题

麦克斯韦方程的多维广义黎曼问题求解器

Multidimensional Generalized Riemann Problem Solver for Maxwell's Equations

论文作者

Hazra, Arijit, Balsara, Dinshaw S., Chandrashekar, Praveen, Garain, Sudip K.

论文摘要

在设计全球约束有限的体积时间域(FVTD)和不连续的Galerkin Time域(DGTD)方案(CED)时,近似多维的RIEMANN求解器是设计全球约束有限的批量时域(FVTD)和不连续的Galerkin Time域(DGTD)方案的必不可少的基础。在这些方案中,我们可以借助Runge-Kutta或Ader Time Stepping实现高阶时间准确性。本文首次介绍了多维近似概括性的Riemann问题(GRP)求解器的设计。多维Riemann求解器接受了其输入结构网格上边缘周围的四个状态,其输出由解决状态及其相关的通量组成。相比之下,多维GRP求解器接受其输入的四个状态及其梯度在各个方向上;它的输出由解决状态及其相应的通量和解决状态的梯度组成。然后可以使用梯度及时扩展解决方案。结果,我们在一个步骤中实现了二阶时间准确性。 在这项工作中,该公式针对具有刚性,线性源术语的线性双曲线系统进行了优化,因为这种公式将在CED中找到最大使用。我们的公式基于GRP产生了总体约束的时间步变策略,该策略在存在僵硬的源术语的情况下被证明是L稳定的。我们提出了几个严格的测试问题,表明用于CED的多维GRP求解器符合其设计的精度,并以最佳的时间步骤执行稳定。测试问题包括高电导率的病例,表明在实际应用中确实实现了有益的L稳定性。

Approximate multidimensional Riemann solvers are essential building blocks in designing globally constraint-preserving finite volume time domain (FVTD) and discontinuous Galerkin time domain (DGTD) schemes for computational electrodynamics (CED). In those schemes, we can achieve high-order temporal accuracy with the help of Runge-Kutta or ADER time-stepping. This paper presents the design of a multidimensional approximate Generalized Riemann Problem (GRP) solver for the first time. The multidimensional Riemann solver accepts as its inputs the four states surrounding an edge on a structured mesh, and its output consists of a resolved state and its associated fluxes. In contrast, the multidimensional GRP solver accepts as its inputs the four states and their gradients in all directions; its output consists of the resolved state and its corresponding fluxes and the gradients of the resolved state. The gradients can then be used to extend the solution in time. As a result, we achieve second-order temporal accuracy in a single step. In this work, the formulation is optimized for linear hyperbolic systems with stiff, linear source terms because such a formulation will find maximal use in CED. Our formulation produces an overall constraint-preserving time-stepping strategy based on the GRP that is provably L-stable in the presence of stiff source terms. We present several stringent test problems, showing that the multidimensional GRP solver for CED meets its design accuracy and performs stably with optimal time steps. The test problems include cases with high conductivity, showing that the beneficial L-stability is indeed realized in practical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源