论文标题

使用扩散蒙特卡洛的磁管三体限制模型中的基态重子

Ground state baryons in the flux-tube three-body confinement model using Diffusion Monte Carlo

论文作者

Ma, Yao, Meng, Lu, Chen, Yan-Ke, Zhu, Shi-Lin

论文摘要

在两个约束场景中,我们对所有基态重子进行了系统扩散蒙特卡洛(DMC)计算,即成对限制和三体通量管限制。以Baryons为例,我们说明了一个可行的程序,可以使用可能的几个体型限制机制研究几个夸克状态,这可以轻松扩展到多Quark状态。对于每个重子,我们提取质量,均方根半径,电荷半径和夸克分布。我们使用折刀重采样方法来估计群众的统计不确定性小于1 MEV。为了确定Baryon电荷半径,我们包括由实验和晶格QCD结果固定的组成夸克尺寸效应。我们的结果表明,如果正确选择参数,则两体和三体限制机制都可以很好地描述实验数据。在磁通管限制中,必须为重子和介子引入不同的张力参数,具体来说,$σ_y=0.9204σ_{q \ bar {q}}} $。通过使用DMC方法计算核子质量的课程是,通道的预先分配不当可能会阻止我们获得真实的基态。有了这一经验,我们获得了$ cc \ bar {c} \ bar {c} \ bar {c} $ system $ j^{pc} = 0^{++} $从diquark-antidiquark spin cline nyf of the variation and variation and variation,我们在以上很难实现的方法,以至于以上是,我们在以上很难实现的方法,从而使您无法实现,我们在以上是,$ cc \ bar {c} \ bar {c} \ bar {c} \ bar {c} \ emand and variat and var as and var s and variated and variatival是在以前, DMC计算。

We make a systematical diffusion Monte Carlo (DMC) calculation for all ground state baryons in two confinement scenarios, the pairwise confinement and the three-body flux-tube confinement. With the baryons as an example, we illustrate a feasible procedure to investigate the few-quark states with possible few-body confinement mechanisms, which can be extended to the multiquark states easily. For each baryon, we extract the mass, mean-square radius, charge radius, and the quark distributions. We use the Jackknife resampling method to estimate the statistical uncertainties of masses to be less than 1 MeV. To determine the baryon charge radii, we include the constituent quark size effect, which is fixed by the experimental and lattice QCD results. Our results show that both two-body and three-body confinement mechanisms can give a good description of the experimental data if the parameters are chosen properly. In the flux-tube confinement, introducing different tension parameters for the baryons and mesons are necessary, specifically, $σ_Y= 0.9204 σ_{Q\bar{Q}}$. The lesson from the calculation of the nucleon mass with the DMC method is that the improper pre-assignment of the channels may prevent us from obtaining the real ground state. With this experience, we obtain the real ground state (the $η_c η_c$ threshold with the di-meson configuration) of the $cc\bar{c}\bar{c}$ system with $J^{PC}=0^{++}$ starting from the diquark-antidiquark spin-color channels alone, which is hard to achieve in the variational method and was not obtained in the previous DMC calculations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源