论文标题

部分可观测时空混沌系统的无模型预测

Balanced Deep CCA for Bird Vocalization Detection

论文作者

Kumar, Sumit, Anshuman, B., Ruettimann, Linus, Hahnloser, Richard H. R., Arora, Vipul

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Event detection improves when events are captured by two different modalities rather than just one. But to train detection systems on multiple modalities is challenging, in particular when there is abundance of unlabelled data but limited amounts of labeled data. We develop a novel self-supervised learning technique for multi-modal data that learns (hidden) correlations between simultaneously recorded microphone (sound) signals and accelerometer (body vibration) signals. The key objective of this work is to learn useful embeddings associated with high performance in downstream event detection tasks when labeled data is scarce and the audio events of interest (songbird vocalizations) are sparse. We base our approach on deep canonical correlation analysis (DCCA) that suffers from event sparseness. We overcome the sparseness of positive labels by first learning a data sampling model from the labelled data and by applying DCCA on the output it produces. This method that we term balanced DCCA (b-DCCA) improves the performance of the unsupervised embeddings on the downstream supervised audio detection task compared to classsical DCCA. Because data labels are frequently imbalanced, our method might be of broad utility in low-resource scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源