论文标题
合成量子电路优化器
Synthesizing Quantum-Circuit Optimizers
论文作者
论文摘要
近期量子计算机有望在每个操作嘈杂但没有误差校正的环境中起作用。因此,应用量子电路优化器以最大程度地减少嘈杂操作的数量。如今,物理学家一直在尝试新颖的设备和体系结构。对于每一个新的物理基板以及对量子计算机的每次修改,我们都需要修改或重写优化器的主要部分以运行成功的实验。在本文中,我们提出了Queso,这是一种自动合成给定量子设备的量子电路优化器的有效方法。例如,在1.2分钟内,Queso可以为IBM计算机合成具有高概率正确性的优化器,该计算机在多元化基准标准的大多数电路(85%)(85%)上,大多数电路(85%)大大胜过领先的编译器(例如IBM的Qiskit和Tket)。 许多理论和算法的见解是Queso的基础:(1)代表重写规则及其语义的代数方法。这有助于对复杂的符号重写规则的推理,这些规则超出了现有技术的范围。 (2)通过将问题降低到一种特殊形式的多项式认同测试形式来验证量子电路等效的快速方法。 (3)一种新型的概率数据结构,称为多项式身份过滤器(PIF),以有效合成重写规则。 (4)有效地应用合成的符号重写规则以优化量子电路的基于光束搜索的算法。
Near-term quantum computers are expected to work in an environment where each operation is noisy, with no error correction. Therefore, quantum-circuit optimizers are applied to minimize the number of noisy operations. Today, physicists are constantly experimenting with novel devices and architectures. For every new physical substrate and for every modification of a quantum computer, we need to modify or rewrite major pieces of the optimizer to run successful experiments. In this paper, we present QUESO, an efficient approach for automatically synthesizing a quantum-circuit optimizer for a given quantum device. For instance, in 1.2 minutes, QUESO can synthesize an optimizer with high-probability correctness guarantees for IBM computers that significantly outperforms leading compilers, such as IBM's Qiskit and TKET, on the majority (85%) of the circuits in a diverse benchmark suite. A number of theoretical and algorithmic insights underlie QUESO: (1) An algebraic approach for representing rewrite rules and their semantics. This facilitates reasoning about complex symbolic rewrite rules that are beyond the scope of existing techniques. (2) A fast approach for probabilistically verifying equivalence of quantum circuits by reducing the problem to a special form of polynomial identity testing. (3) A novel probabilistic data structure, called a polynomial identity filter (PIF), for efficiently synthesizing rewrite rules. (4) A beam-search-based algorithm that efficiently applies the synthesized symbolic rewrite rules to optimize quantum circuits.