论文标题

学习用于解决多目标优化问题的自适应进化计算

Learning Adaptive Evolutionary Computation for Solving Multi-Objective Optimization Problems

论文作者

Coppens, Remco, Reijnen, Robbert, Zhang, Yingqian, Bliek, Laurens, Steenhuisen, Berend

论文摘要

多目标进化算法(MOEAS)广泛用于解决多目标优化问题。该算法依靠设置适当的参数来找到良好的解决方案。但是,在解决非试验(组合)优化问题时,此参数调整在计算上可能非常昂贵。本文提出了一个框架,该框架将MOEAS与自适应参数控制(DRL)集成在一起。对DRL策略进行了训练,以自适应设置在优化过程中解决溶液突变强度和概率的值。我们使用简单的基准问题和现实世界中复杂的仓库设计和控制问题来测试提出的方法。实验结果证明了我们方法在解决方案质量和计算时间方面的优势,以达到良好的解决方案。此外,我们表明学习的政策是可以转让的,即,可以直接应用对简单基准问题培训的策略,以有效地解决复杂的仓库优化问题,而无需重新培训。

Multi-objective evolutionary algorithms (MOEAs) are widely used to solve multi-objective optimization problems. The algorithms rely on setting appropriate parameters to find good solutions. However, this parameter tuning could be very computationally expensive in solving non-trial (combinatorial) optimization problems. This paper proposes a framework that integrates MOEAs with adaptive parameter control using Deep Reinforcement Learning (DRL). The DRL policy is trained to adaptively set the values that dictate the intensity and probability of mutation for solutions during optimization. We test the proposed approach with a simple benchmark problem and a real-world, complex warehouse design and control problem. The experimental results demonstrate the advantages of our method in terms of solution quality and computation time to reach good solutions. In addition, we show the learned policy is transferable, i.e., the policy trained on a simple benchmark problem can be directly applied to solve the complex warehouse optimization problem, effectively, without the need for retraining.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源