论文标题

星系共同进化及其圆形介质的统一模型:湍流和原子冷却物理的相对作用

A unified model for the co-evolution of galaxies and their circumgalactic medium: the relative roles of turbulence and atomic cooling physics

论文作者

Pandya, Viraj, Fielding, Drummond B., Bryan, Greg L., Carr, Christopher, Somerville, Rachel S., Stern, Jonathan, Faucher-Giguere, Claude-Andre, Hafen, Zachary, Angles-Alcazar, Daniel, Forbes, John C.

论文摘要

周边培养基(CGM)在调节星系周围的气体流动中起关键作用,从而塑造它们的进化。但是,有关星系及其CGM共同进化的细节仍然知之甚少。我们提出了一个新的依赖时间的两区模型,该模型不仅自符合星系与其CGM之间的质量和金属流动,还可以跟踪CGM的全局热和湍流动能的演变。我们的模型解释了由超新星风和宇宙积聚以及辐射冷却,湍流耗散以及CGM过压过压力引起的辐射冷却,湍流耗散以及光晕流出的加热和湍流。我们证明,根据参数,CGM可以从凉爽的,湍流支持的相位到病毒 - 温度,热支撑相位的相变(``热化'')。这种CGM相变很大程度上取决于辐射冷却能够平衡超新星风和湍流耗散加热的能力。我们对模型进行了对Fire-2宇宙学水动力学模拟的初始校准,并表明它可以大致重现模拟光环的巴里昂周期。特别是,我们发现,对于这些参数,相位过渡发生在超级祖细胞的高红移和经典$ M _ {\ rm vir} \ sim10^{11} m _ {\ odot} $ dwarfs $ dwarfs,同时在$ z $ z $ z $ z的情况下。我们在模拟中看到了类似的过渡,尽管它更逐渐,这可能反映了我们模型未捕获的径向依赖性和多相气体。我们讨论了模型以及可能的未来扩展的这些局限性。

The circumgalactic medium (CGM) plays a pivotal role in regulating gas flows around galaxies and thus shapes their evolution. However, the details of how galaxies and their CGM co-evolve remain poorly understood. We present a new time-dependent two-zone model that self-consistently tracks not just mass and metal flows between galaxies and their CGM but also the evolution of the global thermal and turbulent kinetic energy of the CGM. Our model accounts for heating and turbulence driven by both supernova winds and cosmic accretion as well as radiative cooling, turbulence dissipation, and halo outflows due to CGM overpressurization. We demonstrate that, depending on parameters, the CGM can undergo a phase transition (``thermalization'') from a cool, turbulence-supported phase to a virial-temperature, thermally-supported phase. This CGM phase transition is largely determined by the ability of radiative cooling to balance heating from supernova winds and turbulence dissipation. We perform an initial calibration of our model to the FIRE-2 cosmological hydrodynamical simulations and show that it can approximately reproduce the baryon cycles of the simulated halos. In particular, we find that, for these parameters, the phase transition occurs at high-redshift in ultrafaint progenitors and at low redshift in classical $M_{\rm vir}\sim10^{11}M_{\odot}$ dwarfs, while Milky Way-mass halos undergo the transition at $z\approx0.5$. We see a similar transition in the simulations though it is more gradual, likely reflecting radial dependence and multi-phase gas not captured by our model. We discuss these and other limitations of the model and possible future extensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源