论文标题
机器学会了卡拉比(Calabi-Yau)指标和曲率
Machine Learned Calabi-Yau Metrics and Curvature
论文作者
论文摘要
找到Ricci-flat(Calabi-Yau)指标是几何形状的长期问题,对弦理论和现象学具有深远的影响。对此问题的新攻击使用神经网络来设计给定的Kähler类中的Calabi-yau指标。在本文中,我们研究了光滑和奇异的K3表面上的数值ricci-flat指标以及卡拉比Yau三倍。我们使用这些Ricci-Flat度量近似值,用于四折双重双重的Cefalú家族和五重的三倍的DWork家族,我们研究了这些几何形状的特征形式。我们观察到,数值计算的拓扑特征的数值稳定性受到神经网络模型的选择的很大影响,尤其是我们简要讨论了不同的神经网络模型,即光谱网络,即正确近似calabi-yau的拓扑特征。使用持续的同源性,我们表明,歧管的高曲率区域在单数点附近形成簇。对于我们的神经网络近似值,我们观察到一个bogomolov-yau类型不平等$ 3C_2 \ geq c_1^2 $,并在我们的几何形状隔离$ a_1 $ type奇点时观察一个身份。我们绘制一个证明$χ(X〜 \ SmallSetMinus〜 \ Mathrm {sing} \,{x}) + 2〜 | \ Mathrm {sing} \,{x} | = 24 $也适用于我们的数值近似值。
Finding Ricci-flat (Calabi-Yau) metrics is a long standing problem in geometry with deep implications for string theory and phenomenology. A new attack on this problem uses neural networks to engineer approximations to the Calabi-Yau metric within a given Kähler class. In this paper we investigate numerical Ricci-flat metrics over smooth and singular K3 surfaces and Calabi-Yau threefolds. Using these Ricci-flat metric approximations for the Cefalú family of quartic twofolds and the Dwork family of quintic threefolds, we study characteristic forms on these geometries. We observe that the numerical stability of the numerically computed topological characteristic is heavily influenced by the choice of the neural network model, in particular, we briefly discuss a different neural network model, namely Spectral networks, which correctly approximate the topological characteristic of a Calabi-Yau. Using persistent homology, we show that high curvature regions of the manifolds form clusters near the singular points. For our neural network approximations, we observe a Bogomolov--Yau type inequality $3c_2 \geq c_1^2$ and observe an identity when our geometries have isolated $A_1$ type singularities. We sketch a proof that $χ(X~\smallsetminus~\mathrm{Sing}\,{X}) + 2~|\mathrm{Sing}\,{X}| = 24$ also holds for our numerical approximations.